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Dr. Peter Bühlmann who provides me with the enlightening research topics of the thesis.
Finally, I would like to thank my parents for their unconditional love and encouragements
during my studies in Switzerland.

ii



Abstract

Variable selection under latent confounding is a classic problem in causal inference. Re-
cently, Chatterjee (2020) proposed a rank correlation and Azadkia and Chatterjee (2021)
laid out an simple but effective approach based on Chatterjee’s rank correlation to define
a new measure of conditional dependence and a new algorithm for variable selection. This
fully non-parametric approach is based on rankings and the method of nearest neighbors.
In this thesis, we incorporated the measure, namely Conditional Dependence Coefficient,
and the algorithm, namely Feature Ordering by Conditional Independence (FOCI), to
conduct variable selection using generated data with latent confounding. Upon several
exploratory simulation experiments, we proposed to use proper confounder estimation
method together with FOCI to not only provides a view of the empirical distribution of
latent confounders and computationally control the false discovery proportion when se-
lecting the signal variables, but also theoretically remove the spurious dependence between
the non-signal predictors and the response. In the light of this founding, we developed a
new FOCI function to include the estimated confounders always in the conditioning set
which is different from the original function, and a resampling scheme with a heuristic
threshold.

As for the confounder estimation, we proposed two methods which are principal compo-
nent analysis (PCA) and variational autoencoder (VAE). We then theoretically justified
the use of PCA in the sense of relative information loss. Our simulation experiment results
have shown that FOCI with VAE will be better and more efficient to nonlinear relation-
ships between the predictors and confounders than using FOCI with PCA, given sufficient
sample size. While PCA is efficient when the hidden confounders have linear relationships
with predictors, it also performs well when we only have a relatively small set of data,
no matter the relationships between predictors and confounders are linear or not. In the
context of magnitudes of latent confounders and the signals, we found that if signals are
dominated by confounders, this will result in the FOCI’s failure to select Markov blankets.
We also developed comparison between FOCI family and classic methods on real dataset,
which had shown competitive MSPE and generalization ability when using FOCI family.
Finally, several future research directions are given at the end of the thesis.

Keywords: nonparametric variable selection, confounder, false discovery proportion, prin-
cipal component analysis, variational autoencoders
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Chapter 1

Introduction

It is clear that causal inference and variable selection are very basic but crucial counterparts

of statistical learning. Their applications lie in a great variety of areas including health,

social, and behavioral studies. There are quite some causal questions in daily life which

require some knowledge of the data-generating process such as the efficacy of COVID-19

mRNA vaccine on different kinds of population, e.g. male and female. However, they

cannot be fully solved from the given data alone. In other words, one normally cannot

know the underlying data generating distribution. As the result, the statistical research

community has developed many causal inference theories (Shanmugam, 2018).

As for the variable selection, it is an old problem in statistics. Variable selection is widely

used for prediction and forecasting in the specific disciplines that attempts to determine

the relationship between one dependent variable and a series of other variables (Hastie,

Tibshirani, and Friedman, 2009). We often call these dependent variables signals. From

linear regression to LASSO (Tibshirani, 1996), there are a variety of models to use. But

all of them are model-based. For example, linear regression assumes that the data follows

a pattern of Y = Xβ + ε, where β is the regression coefficients and ε is the noise term

with some distributions. The shortcoming of model-based method is conspicuous since

one should have lots of assumption in prior which could not be reasonable in reality. In

other words, model-based variable selection often loses generality.

From what has been discussed, it naturally comes out a question. Is that possible to

use model-free methods to implement variable selections under hidden counfoundings and

still generates competitive results? Recently, Chatterjee (2020) proposed a new measure

of statistical association which as simple as the classical coefficients such as Pearson’s

correlation (Benesty, Chen, Huang, and Cohen, 2009) and consistently estimates a simple

and interpretable measure of the degree of dependence. It replaces the traditional measure

like Spearman’s ρ (Myers and Sirois, 2006) and Kendall’s τ (Abdi, 2007), since they are

not that very powerful for all cases, especially for detecting associations that are not

monotonic, or even in the complete absence of noise.

As for testing the conditional dependence, which is basically checking whether P (X,Y |Z) =

P (X|Z)P (Y |Z). There are several method proposed recent years. For example, Linton
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and Gozalo (1996) proposed a method based on conditional cumulative distribution es-

timation. Poczos and Schneider (2012) proposed to use mutual information estimation.

Also, couplas (Dette, Siburg, and Stoimenov, 2013) are also widely used for finding depen-

dence of time series datasets. For the new measure of correlation proposed by Chatterjee

(2020), it is then extended by Azadkia and Chatterjee (2021) by defining a new measure

of conditional dependence called Conditional Dependence Coefficient (CODEC) and ac-

cordingly designed an algorithm Feature Ordering by Conditional Independence (FOCI)

for variable selection, which is suitable to deal with the datasets with causal relationship.

In this thesis, we conducted an exploratory research with numerical simulations using

pseudo-random sampling scheme (Morris, White, and Crowther, 2019). We will first in-

troduce this brand new measure of conditional dependence, CODEC, and go over the most

basic concepts in causal inference which is confounding and then introducing how FOCI

selects the variables by feature ordering. Then, we will use this newly defined algorithm

FOCI based on CODEC to select variables, i.e. the Markov blanket, that are deciding the

response. To recapitalize, we will explore the most plain case of confounding, which is given

Y as response, X = (X1, ...., Xp) as signal and Z = (Z1, ..., Zq) as potential confounders,

we want a subset of X called (Xj)j∈S , where S refers to sufficient if Y and (Xj)j /∈S are con-

ditionally independent with Y given (Xj)j∈S and design different application scenarios to

understand the behaviour of FOCI. Among all the experiments, we mainly discussed two

different kinds of confounding relationship between X and Z, which is linear or nonlinear.

For linear case, we used the Principal Component Analysis (PCA) (Bro and K. Smilde,

2014) to estimate the hidden confounders; for nonlinear case, we naturally think about

using variational autoencoders (Kingma and Welling, 2014) to find the latent space in a

probabilistic way. Both methods are not only give us a view of empirical distribution of

latent confounders, but also remove the spurious association between the response and the

non-signal predictors which providing aids for the FOCI algorithm to select correct signals

and control on the false discovery proportion compared to the case that we do not estimate

the latent confounders and directly run FOCI algorithm. Furthermore, we gave out the

theoretical justification of using principle components as estimator of latent confounders

under some conditions. In addition, we investigated on the magnitudes difference between

the generated signals and confounders, it has then been shown by simulations that the

magnitude difference matters while selecting the Markov blankets. Last but not the least,

we implemented our methods on a real dataset and compare with some classic feature

selection models. The results turned out to be surprising since in the sense of MSPE

and generalization ability, FOCI with latent confounder estimators is competitive with

the classic models. Finally, we discussed the results and proposed some future research

directions.

Paper organization.

i.) Chapter 2 introduces statistical concepts and theorems.

ii.) Chapter 3 reviews the conditional dependence estimator CODEC & feature selection

method FOCI proposed by Azadkia and Chatterjee (2021).

iii.) Chapter 4 formalizes the problems we want to solve and introduces the simulation
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experiments and corresponding results.

iv.) Chapter 5 implemented our methods and classic models of feature selection on a real

dataset.

v.) Chapter 6 summarizes the experimental results and makes the conclusion.

vi.) Chapter 7 provides several thoughts and improvements for future works.



Chapter 2

Mathematical Background

2.1 Graphical models

The following introductions are taken from Clark (2018) with some adjustments.

A graphical model can be seen as a mathematical or statistical construct to connect the

vertices via edges. When pertaining to statistical models, the vertices will normally rep-

resent variables of interest (which is generated by some probability distribution) in our

dataset, and edges will specify the causal relationships among them. Visually they are

depicted in the style of the following example.

Y

X Z

Figure 2.1: A typical causal graph with confounding: Random variables X and the con-
founders Z both contributes to Y . Besides, the confounders Z also decides X.

Any statistical model you have used can be expressed as a graphical model. The above

graph with vertices X, Y , and Z could represent a model in which X and Z predict Y and

X is also dependent on Z.

A key idea of a graphical model is that of conditional independence and Bayesian network.

Definition 2.1.1 (Conditional independence). Two random variables A and B are condi-

tionally independent given a random variable C iff. they are independent in their condi-

tional probability distribution given C, i.e.

(X |= Y |Z) ⇐⇒ FX,Y |Z=z(x, y) = FX|Z=z(x)FY |Z=z(y), ∀x, y, z

Definition 2.1.2 (Bayesian network). Let G = (V,E), where V stands for number set of

vertices, E stands for the set of directed edges and p be the distribution of XV . The pair

4



2.2 Variable selection 5

(G, p) is a Bayesian network if

p(xV ) =
∏
i∈V

p(xi|xpa(i))

Note that pa here means the parent nodes.

Definition 2.1.3 (Confounding). As shown in the Figure 2.1, random variables Z con-

tributes to predictors X and the response Y simultaneously. In the sense of causal infer-

ence, we say that this phenomenon will cause Y and X spuriously associated. In other

words, Z is the confounder.

2.2 Variable selection

In this part, we will define the linear and nonlinear relationship between two variable sets

A and B (Friedman, 2017).

Definition 2.2.1. Given A = (A1, ..., Ak) and B = (B1, ..., Bj), and A is dependent of B,

we can write

A = f(B) + ε,

where ε is random noise matrix. We say that A has linear relationship with B if f(·) is

a linear map that maps from the space of A, i.e. A to the space of B, i.e. B. Similarly,

the nonlinear relationship relies on the nonlinear function g(·) which maps from A to B.

In this thesis, our main focus is to select variables that contributes to the response, i.e.

selecting signal variables (Markov blanket S) from the predictors X where there are latent

confounders that may mislead us to select non-signals predictors, i.e. X\S.

After introducing the above concepts, we are going to introduce the definition of principal

component analysis.

2.3 Principal Component Analysis

Principal Component Analysis, or simply PCA, is a statistical procedure concerned with

elucidating the covariance structure of a set of variables (Gillies, 2018). In particular it

allows us to identify the principal directions in which the data varies.

If the variation in the data is caused by some relationship then PCA gives us a way of

reducing the dimensionality of a data set. That is a very normal method of dimension

reduction which returns a low-dimensional representation of the original dataset.

Assume we have a n× p data matrix X, where p stands for its number of initial variables.

The PCA process can be divided into the following steps:

i.) Compute each column’s sample mean and shift them to zero, then scale each column

to make them have the same standard deviation. (Note: This procedure is necessary

in order to find the correct principal components, since PCA is a method maximizing

the variance.)
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ii.) Calculating the p × p data covariance matrix Σ = (E[Xi, Xj ])1≤i,j≤p and do the

eigendecomposition, which is finding an orthogonal matrix Φ whose columns are

eigenvectors of Σ and a diagonal matrix A whose diagonal elements are eigenvalues

of Σ, i.e.,

ΦTΣΦ = A

iii.) Assume we want the initial p dimensions reduction to k dimensions. We then order

the eigenvalues in the diagonal matrix A from largest to smallest and select the first

k eigenvalues.

iv.) Select the corresponding eigenvetors and form a p×k matrix P . Let Y = XP , which

is our final result.

To summarize, this process is equivalent to finding a new axis system in which the co-

variance matrix is diagonal. The eigenvector with the largest eigenvalue is the direction

of greatest variation, the one with the second largest eigenvalue is of the next highest

variation and so on.

2.4 Variational Autoencoders

In this section, we are going to introduce the ideas behind the variational autoencoder and

how to use it practically (Kingma and Welling, 2014).

VAE is a latent variable model. Such model relies on the idea that the data generated

by a model can be parametrized by some latent variables that will generate some specific

characteristics of the given data.

One of the most crucial idea behind VAE is that instead of trying to construct a space of

latent variables explicitly. We aim to sample in order to find samples that could actually

generate proper outputs which are as close as possible to our distribution.

For that reason, we constructed an encoder-decoder-like network which can be split in two

parts:

• The encoder learns to generate a distribution QΦ(z|x) depending on input samples

X from which we can sample a latent variable Z that is highly likely to generate X

samples. In other words, we learn a set of parameters Φ which rules the distribution

Q.

• The decoder part learns to generate the output which belongs to the real data distri-

bution given latent variable Z as input. In other words, we learn a set of parameters

Θ that generates a function PΘ(x|z) that maps Z to X.

The VAE objective is to maximizing the evidence lower bound (ELBO)

L(pθ, qΦ;x) = EqΦ(z|x)[log pθ(x, z)− log qΦ(z|x)]

over the space of qΦ. In order to further explain the ELBO, we now introduce the definition

of Kullback-Leibler divergence between two probability distributions.
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Definition 2.4.1 (Kullback-Leibler divergence (KL divergence)). Given two random vari-

ables P and Q with probability distribution p and q defined on the same probability space.

The KL divergence is given by

KL(P ||Q) =

∫
p(x) log(

p(x)

q(x)
)dx

Using Definition 2.4.1, we can measure the differences between two probability distribu-

tions. Thus we have that ELBO can be written as the equation

L(pθ, qΦ;x) = −KL(qΦ(z|x)||pθ(z)) + EqΦ(z|x)[log pθ(x|z)] (2.4.1)

Our goal is to differentiate and maximize this ELBO w.r.t. Φ and θ. However, the gradient

of the ELBO w.r.t. Φ cannot be calculated directly. We then are required to estimate

of the ELBO in order to calculate the gradients. Usually, the KL divergence of Equation

2.4.1 can be integrated analytically, such that we only need to estimate the expected

reconstruction error EqΦ(z|x)[log pθ(x|z)] by sampling. This leads to the estimation of

LE(pθ, qΦ) = −KL(qΦ(z|x)||pθ(z)) +
1

M

M∑
i=1

(log pθ(x|z(i))) (2.4.2)

Given N samples, we can construct the estimator of the ELBO based on mini-batches:

L(pθ, qΦ;X) = LM (pθ, qΦ;XM ) =
N

M

M∑
j=1

LE(pθ, qΦ;x(j)) (2.4.3)

In order to solve the problem we will hereby use an alternative method generating samples

from qΦ(z|x). In the context of this thesis, we assume z be a continuous Gaussian random

variable where Z ∼ qΦ(Z|x) = N(~µ, σ2I) = ~µ+ ~σ ⊗ ~ε, where ε ∼ N(0, 1) and ⊗ refers to

element-wise multiplication. To specify, we use the learnt encoder to generate mean ~µ(X)

and standard deviation ~σ(X). Then construct the generated Z as ~µ(X) +~(X) ⊗ ~ε. This

process is called reparametrization trick to allow us to do the backpropagation during the

training process.

Based on above information, we can train a typical variational autoencoder with Gaussian

prior. The illustration can be found in Figure 2.2.

All in all, we can use this method to discover the nonlinear relationship between the latent

variables and the predictors, since we can use deep learning to summarize the nonlinearilty,

which is not possible using PCA. Though kernel PCA is another interesting choice of

discovering nonlinearities, it is very hard to choose what kind of kernel to include, since

we know nothing about the underlying nonlinear relationships.
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Figure 2.2: Typical VAE architecture with standard normal prior and reparametrization
trick (Sinitambirivoutin, 2020)



Chapter 3

Introduction to CODEC and FOCI

3.1 The Coefficient CODEC

3.1.1 Background

Suppose we are going to estimate the degree of conditional dependence between the random

variable Y and random vector X = (X1, ..., Xs) given random vector Z = (Z1, ..., Zt),

which are all defined in the same probability space X . To make this coefficient meaningful,

we must have s ≥ 1 and t ≥ 0, which is saying that we must have at least one signal X

to measure, and there can be no conditioning random variables. In that case, we are

estimating the degree of dependence without any conditions.

Let µ be the probability measure of Y . It is proposed that the following quantity T is the

estimation of degree of conditional dependence of Y and X given Z:

T = T (Y,X|Z) (3.1.1)

:=

∫
E[Var (P(Y ≥ v|X,Z)|Z)]dµ(v)∫

E[Var (1{Y≥v}|Z)]dµ(v)
(3.1.2)

It looks a bit complicated at first glance but its has natural explanation which is a nonlinear

generalization of the partial R2 statistic for measuring the proportion of variation in Y

that is explained by (X,Z) but cannot be explained solely by X (Azadkia and Chatterjee,

2021).

Besides, we can also prove that this measure is well-defined, which is saying that no matter

what v value is given, T will return either a valid value or an invalid (undefined) value

with proper explanations. To emphasize, we are considering the case of

Y
a.s.
= some measurable function of Z,

then P(Y ≥ v|X,Z) = 1{Y≥v} for any v. Therefore in this case, T = 1 and this is a

degeneration case so that we can ignore.

9
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In addition, CODEC also have a very promising property that in nondegenerate cases,

0 ≤ T ≤ 1. Moreover, (T = 0) ⇐⇒ (Y and X are conditionally independent given Z),

and (T = 1) ⇐⇒ (Y is almost surely equal to a measurable function of X given Z).

3.1.2 Estimation of T

After defining the quantity T , a consistent estimator T̂ of T is constructed by Azadkia and

Chatterjee (2021), from which we can directly estimate using the real data. It is defined

in the following way:

Considering we have a dataset of n (n ≥ 2) independently and identically distributed

copies of (Y,X,Z). For each i, let N(i) be the index j s.t. Zj is the nearest neighbor of Zi
w.r.t. Euclidean metric on Rs, where ties are broken uniformly at random. Let M(i) be

the index j such that (Xj , Zj) is the nearest neighbor of (Xi, Zi) in Rs+t, with ties broken

uniformly at random.

Let Ri be the rank of Yi, i.e., the number of j s.t. Yj ≤ Yi.

Assume we have n copies of samples, then comes the final result of T̂ :

T̂ = T̂ (Y,X|Z) (3.1.3)

:=

∑n
i=1(min{Ri, RM(i)} −min{Ri, RN(i)})∑n

i=1(Ri −min{Ri, RN(i)})
, if t 6= 0 (3.1.4)

If t = 0, let Li be the number of j such that Yj ≤ Yi, let M(i) denote the j s.t. Zj is the

nearest neighbor of Zi, with ties broken uniformly at random. In this case,

T̂ = T̂ (Y,X) (3.1.5)

:=

∑n
i=1(nmin{Ri, RM(i)} − L2

i )∑n
i=1 Li(n− Li)

, if t = 0 (3.1.6)

The following theorem proves that T̂ is indeed the consistent estimator of T .

Theorem 3.1.1 (Consistency of estimator T̂ (Azadkia and Chatterjee, 2021)). Suppose that

Y is not almost surely equal to a measurable function of X. Then as n→∞, T̂ → T almost

surely.

Remark. i.) There is no assumptions on the joint probability of (Y,X,Z) are needed

other than the non-degenerate condition that Y is not almost surely equal to a

measurable function of X. This condition is naturally resonable. Since if this does

not hold, then given X, Y is a constant; in this circumstance, Y is both a function

of X given Z and independent of X given Z. In this case, the degree of conditional

dependency is meaningless.
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ii.) Though the limit of T̂ is guaranteed to be in [0, 1], the actual value could be any

value outside of the interval, since its an asymptotic property but the dataset is

finite.

3.2 The Algorithm of Feature Ordering by Conditional Indepen-

dence

After defining the CODEC, we hereby define the core algorithm FOCI which originally

aims to solve the problem of the following:

• Data: n i.i.d. copies of (Y1,X1), ..., ((Yn,Xn)), where X are predictors and Y is the

response

• Aim: Using the dataset, find the Markov blanket of predictors, preferably the small

subset.

The original algorithm of FOCI is given below:

Algorithm 1 Algorithm of Feature Ordering by Conditional Independence (original version
(Azadkia and Chatterjee, 2021))

Input: The dataset (Y,X) . X = (Xj)1≤j≤s; Data consists n i.i.d. copies
Start with S0 ← ∅, i← 1
Let j1 be the index j hat maximizes T̂ (Y,Xj), S1 ← S0 ∪ {j1}
i← i+ 1
while T̂ (Y,Xji+1 |Xj1 , ..., Xji) > 0 do

Let ji+1 be the index j /∈ {j1, ..., ji} that maximizes T̂ (Y,Xj |Xj1 , ..., Xji)
Si+1 ← Si ∪ {ji+1}
i← i+ 1

end while
Output: S := {j1, ..., jk} . Assume we stopped at k

Remark. i.) The consistency of FOCI is assured under certain conditions (Theorem 6.1

in Azadkia and Chatterjee (2021)).

ii.) If the stopping condition does not happen over the whole process, we will select all

the given X consequently.
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Given the original algorithm, we slightly adjusted the main function of the R package

foci to fit our problem setting. It is clear that since we are assuming there will always be

latent variables Z which is undiscoverable but affect the response variable Y , Z (in fact

the estimated Ẑ) should always be in the conditioning set while the FOCI do the variable

selection, the adjusted FOCI algorithm is given below:

Algorithm 2 Algorithm of Feature Ordering by Conditional Independence (edited version)

Input: The dataset (Y,X, Ẑ) . X = (Xj)1≤j≤s; Data consists n i.i.d. copies
Start with S0 ← ∅, i← 1
Let j1 be the index j hat maximizes T̂ (Y,Xj |Ẑ), S1 ← S0 ∪ {j1}
i← i+ 1
while T̂ (Y,Xji+1 |Xj1 , ..., Xji , Ẑ) > 0 do

Let ji+1 be the index j /∈ {j1, ..., ji} that maximizes T̂ (Y,Xj |Xj1 , ..., Xji , Ẑ)
Si+1 ← Si ∪ {ji+1}
i← i+ 1

end while
Output: S := {j1, ..., jk} . Assume we stopped at k

Remark. 1. This edited version of FOCI algorithm is suitable for the problem of variable

selection under hidden confounding.

2. For the estimation of T̂ , we proposed a new measurement method with increased

computational efficiency.

Before stating how it has been improved, we first define the following functions.

Definition 3.2.1. We know that

T̂n(Y,X|Z) =

∑n
i=1(min{Ri, RM(i)} −min{Ri, RN(i)})∑n

i=1(Ri −min{Ri, RN(i)})
,

based on this fact, we define

Qn(Y,X|Z) =
1

n2

n∑
i=1

(min{Ri, RM(i)} −min{Ri, RN(i)}),

and

Sn(Y,Z) =
1

n2

n∑
i=1

(Ri −min{Ri, RN(i)}).

Thus,

T̂n(Y,X|Z) =
Qn(Y,X|Z)

Sn(Y,Z)
.

If the dimension of conditioning set is equal to zero, then

Qn(Y,X) =
1

n2

n∑
i=1

(min{Ri, RM(i)} − L2
i /n)
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and

Sn(Y ) =
1

n3

n∑
i=1

Li(n− Li).

Thus,

T̂n(Y,X) =
Qn(Y,X)

Sn(Y )
.

Our method is to calculate the Qn(Y,X|Z) for each iteration since the denominator re-

mains unchanged. Besides, calculating Qn(Y,X|Z) with fixed conditioning set Z requires

additional computation time. To reduce it, we use an equivalent measure Qn(Y, (X,Z))

which selects exactly the same Markov blanket as using the Qn(Y,X|Z). We give a brief

proof in the following.

By the Definition 3.2.1, we have

Qn(Y,X|Z) = Qn(Y, (X,Z))−Qn(Y,Z).

Since Qn(Y,Z) remains unchanged during iteration, we can just compute the Qn(Y, (X,Z))

to do the feature ordering process. It saves time of running FOCI.



Chapter 4

Problems and Simulation Studies

4.1 Problems and Datasets

In the previous chapter, we went over the working scheme and the theoretical properties

of CODEC and FOCI. In this chapter, we will try to use synthesized datasets in order to

discover what FOCI performs under different types of hidden confounding. In addition, we

will mainly use two hidden variable estimators: principal Components Analysis (Section

2.3) and Variational Autoencoders (Section 2.4).

4.1.1 Problems

In this paper, we are going to do the simulations about two basic cases in causal inference,

which are given in the following Figure 4.1 and 4.2:

Y

X Z

Figure 4.1: A random variable X and the a latent variable Z both contributes to Y .
Besides, the hidden variable Z also decides X

.

Y

X Z

Figure 4.2: Only the latent variable Z contributes to Y . Besides, the hidden variable Z
also decides X. This case is also called confounding

.

Based on these two basic cases, we will do several different simulations to see how FOCI

performs.

14
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Recapitalizing our problem in a detailed manner, we are using the FOCI to select the

Markov blanket of the predictors X = (X1, ..., Xs) and response Y given hidden variable(s)

Z = (Z1, ..., Zt).

After using the designed settings to generate the artificial datasets (Note: the causal

setting is to choose one from the above two relationships (Figure 4.1 and 4.2) to generate

the Xi, i ∈ {1, ..., s}), we will discuss how FOCI performs and what could be improved.

4.1.2 Datasets and Experimental Environment

In this paper, we mainly use R to generate the datasets with fixed random seeds to ensure

the reproducibility. We are using the extant R package FOCI to do the selection. However,

in the section of simulating nonlinear functional relationships, we are going to use Python

and the package of PyTorch to build and train the variational autoencoders in order to

simulate the latent variables.

4.2 Simulation Studies and Results

Before going into our exploratory experiments, we first define the notations that will

appear in this chapter for clarification. Z stands for the latent variables with dimension

n× num_hidden, where n is the number of generated samples and num_hidden is number

of latent variables. B stands for the coefficient matrix with dimension num_hidden × p,
where p is the column dimension of X, i.e., the number of predictors. β stands for the

vector that adds all the latent variables up and contributes to the value of response Y .

4.2.1 Experiment 1: Variable selection over single signal & single latent variable

Settings

Generate 1000 samples with 100 variables X1, ..., X100 ∼ N (0, 1) except for X77 and one

hidden variable Z ∼ U(0, 1). Assuming that Y is a function of Z, we can say that in the

setting of causality that Y is depending on Z. At the same time, we selected a variable,

X77, to be depending on Z by the following way:

X77 = 10
√
Z + ε0,

where ε0 ∼ N (0, 1).

In addition, the Y is depending on some of the signal variables ∈ {X1, ..., X100}. In the

first setting,

Y = X1 ×X10 +X60 × Z + ε,

where ε ∼ N (0, 1)

In the second setting,

Y = X1 ×X10 +X77 × Z + ε,

where ε ∼ N (0, 1)

Here, ε0 and ε are both random noises which aim to simulate the noise of a real data.
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Methods & Objectives

Using PCA to estimate the single latent variable Z as Zest and regard it as a prediction

variable, i.e. Xnew = X column binding Zest. We repeat this simulation for 50 times.

Results

The results are given below, while the total simulation counts is 50.

X1 X3 X60 Zest X77

44 40 50 18 23

Table 4.1: Results of the first setting

X1 X3 X77 Zest
46 45 49 47

Table 4.2: Results of the second setting

Discussions

Overall, FOCI selects correctly when there is dependency between the response and the

predictor. The frequencies of signal selection are very closed to 50 times in both cases,

which is satisfying.

However, when there is confounding (the first setting), FOCI wrongly selects X77 to be

regarded as an element in Markov blanket for nearly 50% of the total cases. Besides, if

we regard Zest as our predictor, the case with confounding will selects only 18 out of 50

times, which is unsatisfying.

I am conjecturing the reason why the case with confounding performs worse:

• It is due to the nonlinear relationship between X and Z, and Y and X. In this setting,

using PCA will only discover a linear relationship, and hence lead to a sub-optimal

estimation of Z.

• Since we are only using 1000 samples per simulation. This can lead to an inaccurate

estimate of CODEC value T̂ , and hence influence the process of FOCI.

• The latent variable is affecting only one of the predictorsX. Under this circumstance,

if one want to make the latent variable estimation, PCA will not be a good choice

because the projection from original X space to the hidden variable Z space is not

dense. Here, the dense is defined as the notion that X and Z are densely related. In

other words, every latent confounder contributes to all the predictors. In that case,

PCA would possibly be a sharp weapon for us to deal with estimating the latent

confounding. We will give a formal proof later.

Furthermore, we have realized that including the estimated hidden variable in the predic-

tors may not be a good idea, it is worthwhile to try to let the estimated hidden variable
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not attending the selection process, but always stay in the conditioning set. This change

can motivates our edited version of FOCI main function.

Finally, from this basic experiment, we found that only calculating the correct frequencies

of signals will restrict our insights about the other predictors. For example, in the first

setting, we only looked at the statistic of X3, X10, and X60. Since we do not know whether

the FOCI algorithm selects other redundant variables. It is hard to say whether the FOCI

performs well. For instance, if we simulate for 50 times, and got near 50 frequencies

selecting X3, X10, and X60. However, while selecting the correct sufficient subsets, it

simultaneously includes lots more redundant predictors, which will lead to a mess.

Those thoughts lead to the following Experiment 2.
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4.2.2 Experiment 2: Variable selection over multiple signals & multiple latent

variables

New FOCI function

As we mentioned before, it is worthwhile to always include the estimated hidden variables

in the conditioning set to seek for a better variable selection result. We hereby introduce

a crucial additional arguments in the new version of FOCI function foci_new based on

the original version foci_main (Azadkia, Chatterjee, and Matloff, 2021). This argument

is called num_hidden, when num_hidden = 0, that means we do not care about the latent

confounders, and directly use the previous version foci_main. However, if num_hidden

is equal to some integer l > 0, then we will use the estimated Zest with dimension N ×
num_hidden.

Settings

GenerateN = 10000 samples with 100 variablesX1, ..., X100). Assume that X = (X1, ..., X100)

are all generated from Z = (Z1, Z2, Z3), where Zi ∼ U(10, 20), ∀i ∈ [3], and the relation-

ship between X and Z are as follows:

X = Z ·B + ε0,

where B is the coefficient matrix generated randomly from U(0, 1) (which makes the rela-

tionship linear) and (ε0)ij ∼ N (0, 1), i ∈ [10000], j ∈ [100] is noise term matrix.

Besides, we define the response Y = X3 +X10 +X77 +Zβ+ε, where βi ∼ U(0, 1), ∀i ∈ [3].

Methods & Objectives

Our goal is to use the FOCI to select the correct Markov blanket, i.e. X3, X10, X77, based

on the fact that X is depend on Z. Since in reality we do not know how many hidden

variables are affecting X and the information about the hidden variables are not our main

focus, we hereby focusing on the question that: By including how many estimated hidden

variables Zest in the conditioning set can we achieve the best precision = TP
TP+FP regarding

selecting X3, X10, X77? Or in other words, control the false discovery proportion (FDP) =
FP

TP+FP by adjusting the conditioning set. Here, TP refers to true positives, which in our

case is the number of correctly selected Markov blankets. On the other hand, FP refers

to false positives, which in our case means that FOCI selects them but they should not

appear in the Markov blanket since they are independent with response Y conditional on

hidden variables Z.

We again using the PCA to estimate the hidden variables, i.e. how many principal compo-

nents relates to how many hidden variables, with decreasing order of explained variance.

We start from including PC0, which is to do nothing, PC1, which is to include the first

principal component, and increases the principal components included by adding one PC

each time to see the results.
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Results

We run from including PC0 to including PC7 (all previous PCs included), with each run

100 times of repetition. The result is as following:

PCs TP FP Precision

PC0 300 249 0.547

PC1 300 116 0.721

(PC1 , PC2) 300 63 0.826

(PC1, ... , PC3) 300 23 0.929

(PC1 , ... , PC4) 300 25 0.923

(PC1 , ... , PC5) 300 42 0.877

(PC1 , ... , PC6) 300 57 0.840

(PC1 , ... , PC7) 300 66 0.820

Table 4.3: The TP, FP and Precision table of including different amount of estimated
principal components, with N = 10000 samples

Discussions

In the above Table 4.3, TP is the abbreviation of true positive, which stands for the

correct selection of X3, X10, X77; FP is the abbreviation of false positive, which stands

for the wrong selection of the previous three variables but in reality they should not be

selected; precision stands for the ratio of TP
TP+FP .

We have discovered that including three hidden variables will lead to a better result of

precision, which coincides with the truth that we have defined three hidden variables.

While including more and more principal components (starting from PC3), it did not lead

to a better result but the precision kept decreasing.

This perfect result tell us that when the estimation method and selection process is de-

signed properly. FOCI will reach approximately 93% of precision.

Finally, this experiment provide the empirical justification for including the Zest in the

conditioning set as it decreases the false discovery proportion for predicting the signal

variables given sufficient sample size (in our case N = 10000).

Additional Experiment I

After seeing the high precision the FOCI has reached, we are wondering if this precision

good enough? The question can be solved comparing the including Zest version and the

version including the true latent confounders Z (which should never be known in reality).

We assume that

Y = X3 +X10 +X77 + Zβ + ε

.

The comparison of precision is among these two cases:

i.) True Z are considered as conditioning set,
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ii.) Estimated Z are considered as conditioning set, the number of hidden variables

included = 0, 1, 2, 3, 4, 5, 6, 7.

We use the same random seed as the previous experiment, so the part two’s result should

be exactly the same. The result is given in the following table:

PCs TP FP Precision

PC0 300 249 0.547

PC1 300 116 0.721

(PC1 , PC2) 300 63 0.826

(PC1, ... , PC3) 300 23 0.929

(PC1 , ... , PC4) 300 25 0.923

(PC1 , ... , PC5) 300 42 0.877

(PC1 , ... , PC6) 300 57 0.840

(PC1 , ... , PC7) 300 66 0.820

True Z 300 5 0.984

Table 4.4: The TP, FP and Precision table of including different amount of estimated
principal components and including the true Z, with N = 10000 samples

Remark. i.) We can see including the true hidden variables Z will lead to the best

precision, which is not surprising. On the other hand, it demonstrates that with

more accurate estimation of hidden variables, we will have better variable selection

results. This empirically proves that FOCI is a strong tool without any regression

model assumptions to deal with sufficient dimension reduction problem especially in

the area of causal inference.

ii.) It illustrated that PCA is a proper estimation method here dealing with latent

variables, which should be considered primarily when we are dealing with real-life

datasets with latent variables.

iii.) The loop over PC0 to PC7 provides us with a good estimation scheme to find the

amount of the latent variables. In our case, we can infer from the loop results that

the number of hidden variables could be three or four.

Additional Experiment II

Under the same setting, we also wants to see whether increasing the inclusion of principal

components to up to PC100 would harm the FOCI selection process. Since when we

are talking about including all 100 PCs, it is just an transformation from the original

Euclidean space to another one.

Besides, we also want to see whether decreasing the generated i.i.d. samples from 10000

to 1000 will lead to a much worse variable selection results.

We this time settled the N = 1000 and each iteration the repetition time reduces from

100 to 20, but will go over including all the principal components (in our case to PC100).

The result is given below in the Table 4.5 (Note: for the sake of simplicity, (PC1, ..., PCk)

will be denoted by [PCk])
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PCs TP FP Precision

PC0 54 60 0.474

PC1 58 51 0.532

[PC2] 58 48 0.547

[PC3] 58 36 0.617

[PC4] 59 48 0.551

[PC5] 60 51 0.541

[PC6] 60 59 0.504

[PC7] 60 61 0.496

[PC8] 59 62 0.488

[PC9] 60 54 0.526

[PC10] 60 47 0.561

[PC11] 59 54 0.522

[PC12] 59 58 0.504

[PC13] 59 59 0.500

[PC14] 58 67 0.464

[PC15] 59 71 0.454

[PC16] 59 54 0.522

[PC17] 59 79 0.428

[PC18] 58 67 0.464

[PC19] 60 67 0.472

[PC20] 59 70 0.457

[PC25] 58 61 0.487

[PC50] 57 59 0.491

[PC75] 59 52 0.532

[PC100] 59 71 0.454

True 60 9 0.870

Table 4.5: The TP, FP and Precision table of including different amount of estimated
principal components (up to PC100) and including the true Z, with N = 1000 samples

Remark. i.) We can see that even we always couldn’t find a good number of FP (ideally

the less the better). There does not exist a very conspicuous decreasing trend of

precision while PCs included are increasing.

ii.) Besides, we also observed that while the included PCs are increasing, the TP will

not change a lot, even including 100 PCs. It is hard to say what causes this, but I

am pretty sure that the random noise between (X and Z) and (Y and X) will not

make the PCA rotation a strictly linear one, this helps the FOCI to judge which is

belong to Markov blanket.

iii.) All of the precision values went down conspicuously, we believe that less samples will

lead to worse variable selection results.
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4.2.3 Experiment 3: Comparison between Z and Zest

In the last experiment, we proposed a viewpoint that the more accurate our estimate of

latent variable Z is, the more precision and less false discovery proportion we have when

using new FOCI to select the Markov blankets. This leads to a question: Does our estimate

Zest really close to Z in distribution without considering the variable selection?

Settings

Generate 10000 copies of data, Z ∼ N (0, It), where X is generated from Z which is a

linear transformation with random noise (as described previously X = Z · B + ε0, see

Section 4.2.2).

Methods & Objectives

Straightforwardly, we can use illustrations of empirical cumulative distribution function

(ECDF) to compare the similarity of underlying distributions between two given n × r
data matrices, where n stands for the amount of copies, r stands for the number of hidden

variables. There are also many other methods to measure and judge the distribution

similarities between samples. Kolmogorov-Smirnov test (Massey, 1951) is one of the most

used, but it is rather like a test which judges whether two are similar. Consequently, we

chose another measure which is estimating the overlapping areas to illustrate the extent

of similarity, which is called overlapping index (Pastore and Calcagǹı, 2019).

Definition 4.2.1 (Overlapping index). Let us assume two real probability density functions

fA(x) and fB(x). The overlapping index η : Rn × Rn → [0, 1] is defined as follows:

η(A,B) =

∫
Rn

min[fA(x), fB(x)]dx,

where the integral can be replaced by summation in the discrete case.

The estimation of overlapping index η̂ is established and have already formed an R package

overlapping. We will use it during the experiment.

Results

The illustration is given in the following Figure 4.3. Besides, the corresponding overlapping

index in this figure is η̂ = 0.9080391.

Discussions

i.) η̂ is close to 1 indicates that two set of random vectors have similar underlying

distribution. It is a good sign that PCA really works in the context of pure empirical

CDF comparison but not under the context of FOCI feature selection process.

ii.) We can see from the Figure 4.3 that the standardized data is very close to the

original Z’s empirical CDF. That gives us justification of standardize / normalize

the datasets prior to estimate the hidden confounders Zest.
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Figure 4.3: Illustration of standardized Z and standardized Zest

4.2.4 Experiment 4: Invertible transformation P on Z

Since we have already shown that after putting the estimated hidden variables Zest into

the conditioning set of CODEC function T̂ will do a better job than putting them into

the predictors, we now want to see does the invertible (orthogonal) transformation P on

Zest will change the CODEC value. It is worth noting that if there exists such extent of

invariance, it will computationally justify that PCA is proper to use for dense relationship

between Z and X, since by the nature of PCA, estimating Zest is approximately equivalent

to estimate Zest ×M ≈ Z, where M ≈ P−1.

Settings

We assume that

Y = X3 +X10 +X77 + Zβ + ε,

where Z = (Z1, Z2, Z3). All of the remaining settings are the same as that of Experiment

2 (See Section 4.2.2).

We generate random invertible square (transformation) matrix using the property that

the product of matrices is invertible if each of the multipliers are invertible.

Let Λ be a 3×3 diagonal matrix whose square product is not I3, U be a orthogonal matrix,

so that

P := UΛUT

is an invertible matrix but not orthogonal since P TP = UΛUTUΛUT = UΛ2UT , which is

definitely not I3 (If so, we must have P TP = I = UΛ2UT , which indicates that UTU = Λ2,
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and is contradicted to the previous assumption).

Methods & Objectives

This experiment aim to investigate how the number of data samples affect the absolute

difference between CODEC function conditioning on original Z and transformed P̂ (Z),

where P̂ is a randomly chosen invertible transformation, whose transformation matrix P

is invertible but not orthogonal.

Specifically, this experiment is aim to calculate the absolute difference between CODEC(Y,X,Z)

and CODEC(Y,X, P̂ (Z)), where P̂ is invertible yet not orthogonal while changing the

amount of samples n.

Results

In our setting, the number of samples N ranges from 100 to 20000 with an increment of

100.

We particularly calculate

C0 = CODEC(Y,X3:10, Ẑ)

and

C1 = CODEC(Y,X3:10, P̂ (Ẑ)),

where Z is estimated from the first three PCs.

The result is shown in Figure 4.4.

Figure 4.4: The absolute difference between C0 and C1 with the increasing number of
samples, the increment of increasing is 100
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Discussions

i.) It is clear that with the sample increasing, the difference between C0 and C1 are

getting closer to zero. It could be a correct hypothesis that with n → ∞,∆C =

|C0 − C1| → 0.

ii.) The gray area is represents the 95% confidence interval since we are using a LOESS

smoother (Cleveland, 1979) to illustrate.

iii.) We also tried the experiments on orthogonal transformations, which returns us with

exactly the same CODEC values.

Robustness of variable selection on invertible transformations

Using the same setting as the previous experiment, with N = 5000, p = 100, repetitions =

20. We tried to compare the selection results without transformation and the one with

arbitrary invertible transformation on the estimated hidden Z.

The result is as following:

PCs TP FP Precision

PC0 59 44 0.573

PC1 60 25 0.706

[PC2] 60 18 0.769

[PC3] 60 17 0.779

[PC4] 60 12 0.833

[PC5] 60 18 0.769

[PC6] 60 17 0.779

Table 4.6: TP, FP and precision table without transformation, with N = 5000

PCs TP FP Precision

[PC2] 60 21 0.741

[PC3] 60 20 0.750

[PC4] 60 24 0.714

[PC5] 60 34 0.638

[PC6] 60 25 0.706

Table 4.7: TP, FP and precision table with some invertible but not orthogonal transfor-
mations, and N = 5000

Remark. i.) Table 4.6 refers to the selection results without any transformations, each

PCs with 20 repetitions and we calculate the accumulated results.

ii.) Table 4.7 refers to the selection results with random designed transformations which

are introduced before, i.e. P = UΛUT , where U is orthogonal matrix and Λ is a

diagonal matrix. Here our Λ is
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
1 + δ1 0 · · · 0

0 1 + δ2 · · · 0
...

. . .
...

0 · · · 0 1 + δk


k refers to the dimension of our estimated hidden variables, e.g., if we have 5 esti-

mated hidden variables, k should be 5 in order to conform the dimensions of trans-

formation matrix. Here,

δi ∼ U(0, 1), i = 1, ..., k

iii.) Table 4.7 is starting from PC2 since 0× 0 and 1× 1 matrices are meaningless.

iv.) The result shows that with invertible projection on the estimated Z, the algorithm

FOCI still selects correct variables but with a tiny bit more false positives. The

precision is fairly good compared to the selection results without transformations.

From above discussions, we computationally proved the justification of using principal

components as estimator of latent confounders. In the next section, we will theoretically

justify the statement.
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4.2.5 Theoretical support of using principal components as estimator

From what we have discussed before, we state our assumptions and then begin to justify

the reasonableness of using principal components.

Assumptions:

i.) X ∈ Rn×p and Z ∈ Rn×l are densely associated without random error term, i.e.,

X = F (Z),

where F is an invertible affine transformation (definition given below) from Euclidean

space Rn×p to Rn×l.

ii.) X has zero mean and a positive definite population covariance matrix CX = E[XXT ].

Definition 4.2.2 (1-Nearest Neighbors (1-NN) (Kramer, 2013)). For a given vector x′ ∈ Rn,

the 1-nearest neighbors are defined as the vector x ∈ Rn that minimize the Euclidean

distance between the two vectors, i.e.,

x ∈ arg min
v
{
∥∥v − x′∥∥2},

and the ties broken uniformly at random.

Definition 4.2.3 (Isometry). A function f : Rn → Rn is an isometry if every x, y ∈ Rn

satisfies

‖f(x)− f(y)‖2 = ‖x− y‖2 .

In other words, we say f is isometry if it preserves the norms.

Definition 4.2.4 (Orthogonal transformation). Given any two nontrivial Euclidead spaces

E and F of the same finite dimension n, a function f : E → F ia an orthogonal transfor-

mation iff. it is linear and

‖f(u)‖2 = ‖u‖2 ,

for all u ∈ E.

Thus, an orthogonal transformation is a linear map that preserves the norms.

Definition 4.2.5 (Linearity). A function φ : Rn → Rm is called linear if it satisfies the

following properties:

(1) For every x ∈ Rn and every α ∈ R, we have φ(αx) = αφ(x).

(2) For every x, y ∈ Rn, we have φ(x+ y) = φ(x) + φ(y).

Note that if φ is linear, then there exists an m× n matrix L such that φ(x) = Lx.

Definition 4.2.6 (Affine transformation in Rn). An affine transformation of is a map f :

Rn → Rm of the form

f(p) = Ap+ q,

for every p ∈ Rm and q ∈ Rm.
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The inverse transformation of an invertible affine transformation is denoted by f−1.

Definition 4.2.7 (Translation). A translation Ty defined in Rn is that Ty(x) = x + y, for

any x, y ∈ Rn.

Lemma 4.2.8. Every isometry F that satisfies F (0) = 0 is linear.

Proof. The proof can be found in page 3 of DeVos (2018).

Theorem 4.2.9. Every isometry F is an affine transformation.

Proof. Let F be an isometry and let u = F (0). We then define a new transformation

G = T−u ◦ F and we have

G(0) = T−u ◦ F (0) = T−u(u) = u− u = 0.

From Lemma 4.2.8, we have G is a linear map, which indicates that there exists a matrix

L such that G(x) = Lx. It follows naturally that F (x) = Lx+ y, which indicates that F

is an affine transformation.

Remark. 1. Orthogonal transformation is a subset of affine transformation, which pre-

serves Euclidean norm naturally.

2. It follows that the composite of two affine transformations are still affine transformation,

which indicates that composite affine transformations still preserves the Euclidean norm.

Next, we will review some of the key notions to define a CODEC function in Azadkia and

Chatterjee (2021).

Recall the Equation 3.1.4 and the definition of N(i) to be the index j s.t. Zj is the nearest

neighbor of Zi w.r.t. Euclidean norm on Rs, where ties are broken uniformly at random.

Besides, let M(i) be the index j such that (Xj , Zj) is the nearest neighbor of (Xi, Zi) in

Rs+t, with ties broken uniformly at random.

Finally, let Ri be the rank of Yi, i.e., the number of j s.t. Yj ≤ Yi.

We propose the following theorem.

Theorem 4.2.10. If F is an affine transform, then CODEC(Y,X, F (Z)) = CODEC(Y,X,Z).

Proof. From the definition of CODEC function, only N(i) and M(i) would possibly change

after conditioning on F (Z). In the sense of finding 1-NN, we will focus on calculating the

Euclidean norm, which is preserved by affine transformation using Theorem 4.2.9. This

leads to the results of 1-NN unchanged.

Hence, RM(i) and RN(i) will remain unchanged, which indicates that the CODEC values

will be the same.
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Based on the fact that PCA is a process of orthogonal transformation X′ = X ×M and

X = F (Z) by assumption, we have

X′ = F (Z)×M = G(F (Z)) = H(Z),

where G is a orthogonal transformation and H = G ◦ F .

Noticing that M is orthogonal which belongs to the family of invertible affine transforma-

tion (by setting A an n × n orthogonal matrix and q = 0), and F is an invertible affine

transformation. We have H is invertible affine transformation, and thus H−1(X ′) = Z.

Using Theorem 4.2.10, we have

CODEC(Y,X,X′) = CODEC(Y,X, H−1(X′)) = CODEC(Y,X,Z).

This gives the justification of using PCA as latent confounder estimator. Before going on,

it has also proposed several issue with respect to variable selection.

i.) Since X ′ = G(X), this also indicates that CODEC(Y,X,X′) = CODEC(Y,X,X),

which is equal to zero undoubtedly.

ii.) In the sense of dimension reduction (find the correct number of latent confounders),

we will always choose k < p principle components where p is the number of predictors.

In this case, the output will be truncated after performing PCA and the information

is lost which makes it not an affine transformtion.

For the first issue, it can be explained heuristically and computationally.

Heuristically, we know that there is typically an error term E that makes X the noisy

signals generated from Z, i.e.,

X = F (Z) + E.

Under this condition, we will have

X′ = (F (Z) + E)×M = G(F (Z) + E)

= G ◦ F (Z) +G(E)

= H(Z) +G(E)

Thus, with the noise term, we could actually selects the variable through including the

principal components in the conditioning set. In this sense, we are using a approximate

version of original Z. It remains to discover which type of random noise and how large of

the sample size will affect the CODEC value in the future.

Computationally, the Experiment 7 has shown that with this random noise term E, FOCI

actually selects without losing much of the ability finding the conditional dependence when

conditioning on full principle components. (See Experiment 7 Discussion 4.2.8 iii.)

For the second issue, we will introduce some new notions presented by Geiger and Kubin

(2012) which relates to the accurate definition of loss of information. In the context of
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information, we will show that when the sample size increases to infinity, the information

loss will converge to zero, which makes the low-dimension representation feasible as well

as adds to the credibility of retrieving original latent confounder Z using Xtruncated.

The following definitions and theorems are a review of Geiger and Kubin (2012) and Rényi

(1959). All the related proofs can be found in these two papers.

Definition 4.2.11 (Relative information loss). Let X ∈ X be an N -dimensional random

variable and let Y = g(X), where g(·) is a function (map). We define the relative

information loss induced by this map as

l(X → Y ) = lim
n→∞

H(X̂n|Y )

H(X̂n)
,

where H stands for the Shannon (Shannon, 1948) entropy

H(X) = −
∑
x∈X

pX(x) log(pX(x)),

and X̂n = [nX]
n (element-wise round-up)

Definition 4.2.12 (Information dimension). The information dimension of a random vari-

able X is given as

id(X) = lim
n→∞

H(X̂n)

log n
,

provided the limit exists.

Lemma 4.2.13. Let X be a random variable with positive and finite information dimension

id(X). Then, if id(X|Y = y) exists and is finite PY - almost surely, the relative information

loss equals

l(X → Y ) =
id(X|Y )

id(X)
,

where id(X|Y ) =
∫
id(X|Y = y)dPY (y).

Theorem 4.2.14. Assume X is a matrix where each of its n rows represents an indepedent

sample of N -dimensional Gaussian random variable X with sample covariance matrix

ĈX = 1
nXXT and n ≥ N . Besides, we assume that after PCA transformation, we trun-

cated the PCA transformed Y N = FPCA(X) to a lower dimension Y K . We then by Lemma

4.2.13 getting the relative information loss, which is equal to

l(X → Y K) =
N − 1

2n
× N −M

N
.

Remark. 1. It indicates that while sample size n→∞, the information loss of truncated

PCA will converge to zero, which lead us to accurately retrieving the latent confounders

Z.

2. Combine this theorem with the above discussions about the CODEC value retrieving
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with random error terms, we can conclude that while sample size is sufficiently large, we

can use first-K (K < N) principle components to represent the latent confounders and

conditioning on them without worrying the vanishing conditional dependence (zero-valued

CODEC).
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4.2.6 Experiment 5: Feature selection when the relationship between X and Z

is not dense

Settings

Suppose we have Y = X3 +X10 +X77 +Zβ+ε, where βi ∼ U(0, 1),∀i ∈ [3] and ε ∼ N (0, 1)

is the random noise. But this time we have

X1, ..., X10 =
√
Z ·B + ε1,

where Z = (Z1, Z2, Z3), where Zi ∼ U(10, 20), ∀i ∈ [3], B is the coefficient matrix gener-

ated randomly from U(0, 1) and ε1 is the random noise with standard normal distribution.

Besides, we have

X11, ..., X100 |= Z,

this makes the effect of Z on X not dense.

To summarize, we have X = (X1, ..., X100), and

Xi =


√
Z ·B when i = 1, ..., 10

∼ N (0, 1) when i = 11, ..., 100
+ ε1,

where ε1 is the random noise vector with standard normal distribution, which the same

random noise as the previously defined one.

Methods & Objectives

In this experiment, we want to see whether using PCA as hidden variable estimate still

performs well under this condition.

Results

We run from including PC0 to including PC15 (all previous principal components included)

with each iteration 20 times of repetitions. The result is given in Table 4.2.6.

Discussions

i.) We can see that we always couldn’t find a good number of TP (ideally it should be

60). The best result of TP now is to include nothing and the best result of precision

is to only include one principal component, which counters the fact that we should

have three latent confounders. This suggests that while the relationship between

X and Z is nonliear and not dense (Note: piecewise relationship between X and Z

has additionally add the nonlinearity), PCA may not be a good estimator of hidden

variables for selecting Markov blankets. We probably need to find another estimator

of latent variables, for example variational autoencoders to ease the problem of

nonlinearity.

ii.) Besides, using different generated samples at each iteration and calculate the total

true positives and false positives may not be meaningful since it is impossible to get
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PCs TP FP Precision

PC0 54 56 0.513

PC1 45 41 0.523

[PC2] 43 40 0.518

[PC3] 42 55 0.433

[PC4] 39 54 0.419

[PC5] 35 55 0.389

[PC6] 53 71 0.427

[PC7] 42 87 0.326

[PC8] 42 83 0.336

[PC9] 44 88 0.333

[PC10] 48 102 0.320

[PC11] 53 99 0.349

[PC12] 36 83 0.303

[PC13] 42 92 0.313

[PC14] 44 109 0.288

[PC15] 41 114 0.265

Table 4.8: TP, FP and precision table, with N = 5000

real-life datasets in this way, it is more meaningful in the sense of variable selection

from my point of view to generate one piece of data and resampling subsamples from

it. This scheme will be introduced in the next experiment.
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4.2.7 Experiment 6: Using permuted subsamples during selection process

Settings

Suppose we have Y = X3 +X10 +X17 + Zβ + ε. We also have

X1, ..., X10 =
√
Z ·B,

where B is coefficient matrix with entries generated from U(0, 1), ε1 is the random noise

with standard normal distribution. Besides, we have

X11, ..., X20 |= Z,

this makes the effect of Z on X not dense.

To summarize, we have X = (X1, ..., X20), and

Xi =


√
Z ·B when i = 1, ..., 10

∼ N(0, 1) when i = 11, ..., 20
+ ε1,

where ε1 is the random noise vector with standard normal distribution.

Methods & Objectives

Since we are not getting good results of variable selection while there is nonlinear and

non-dense relationship between X and Z, we decided to change to data generating scheme

in order to reduce the misleading effect of the nonlinear and non-dense relationship.

The data generating scheme is easily to summarize, which is resampling the permuted

sub-samples (without replacement) to not only reduce the computation time and thus

increases the repetition times of the same dataset which will add stability to the variable

selection process, but also can spread the false positives over every non-Markov blanket

random variables. The advantage of this scheme is that one can clearly distinguish the

difference between the signals and non-signals, which certainly helps to select signals.

We hereby define our resampling scheme.

Definition 4.2.15 (Resampling scheme).

i.) Generate a large sample S with N entries using the given relationship between Y

and X.

ii.) Randomly choosing subsamples Si, i = 1, ..., R with size N/2 without replacement.

iii.) Total R sets of the subsamples will then be used to extract the principal components

and then implement the FOCI algorithm.

Actually, for every set of subsamples, we will run the current algorithm and record a vector

indicating whether the feature is selected for each repetition, i.e. a vector with entries 0

and 1, 0 stands for the corresponding feature is not selected by FOCI, 1 stands for the

corresponding feature is selected by FOCI. We then add them column by column and get
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the frequencies across all the features. In the end, we will get a vector of size equal to the

number of predictors that counts the frequencies that a variable appears out of R times.

Results

We run from PC0 to PC20 with N = 10000 and R = 20. The result is as following:

PCs Frequency vectors

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

0 6 3 20 6 6 8 11 5 8 20 1 2 1 0 1 0 20 0 0 1

1 2 0 20 1 2 1 3 2 4 20 2 0 1 4 2 3 20 0 1 1

2 4 0 20 3 2 2 4 2 1 20 0 1 0 1 2 1 20 1 0 0

3 2 2 20 1 2 0 3 6 5 18 0 3 1 1 1 2 19 1 0 1

4 1 1 20 1 6 0 1 5 3 19 1 0 0 0 1 1 19 1 1 0

5 4 3 17 2 3 3 2 3 3 17 2 0 0 0 0 1 20 0 0 2

6 5 2 19 2 4 0 3 3 3 17 4 3 2 1 1 4 20 2 0 0

7 1 2 20 0 2 3 6 2 4 19 2 4 3 1 0 0 19 1 1 0

8 2 2 17 1 2 1 1 4 0 19 1 0 1 2 0 2 19 1 2 0

9 3 1 16 2 3 3 4 2 0 18 3 3 2 0 1 0 16 2 3 2

10 1 4 18 3 3 3 5 3 3 17 3 5 1 1 1 0 18 2 3 1

11 0 3 20 3 3 2 4 1 3 17 2 2 5 2 1 2 17 1 3 3

12 2 1 20 4 3 0 5 3 4 20 1 1 1 0 4 1 16 3 5 3

13 2 2 20 2 4 1 4 6 3 18 3 2 2 1 2 1 17 0 3 3

14 2 3 18 0 5 6 3 5 3 17 2 3 2 2 2 1 16 2 2 0

15 2 2 18 2 2 5 3 4 3 18 4 3 2 3 0 0 16 2 1 1

16 3 2 17 1 5 3 4 3 1 19 3 1 4 4 2 0 14 1 3 1

17 3 3 18 5 3 4 3 3 1 18 3 1 3 3 2 2 14 0 2 1

18 4 3 19 4 2 5 5 2 4 19 2 2 1 4 3 2 17 5 0 0

19 3 2 19 4 3 4 4 7 5 20 2 1 2 2 3 0 17 2 2 1

20 3 2 16 4 2 4 2 5 5 17 0 2 1 1 4 2 17 3 1 2

Table 4.9: Frequecy table of different number of principal components included, with
N = 10000 and signals X3, X10, and X17 bold-faced and highlighted as light indigo.

Discussions

i.) Including zero to two principal components as the estimator of hidden variables gives

us the best true positive results. It is assumed that including 3 PCs would give us the

best result but in fact not, this could be due to the non-dense relationship between

X and hidden Z which leads to a unprecise estimation of latent confounders.

ii.) Although including nothing which is to use the original FOCI algorithm without con-

sidering the latent confounders also selects all the true positives, it perform worse

than including 1 PC or 2 PCs in the sense of controlling the false discovery propor-

tion.

iii.) There is a significant threshold τ between the frequencies of single true positives

and single false positives. Though when adding the frequencies of TP and FP up,

the different will be non-significant, but in this table if we choose τ = 10, we will

do a perfect job of finding the Markov blanket. I believe in general case, choosing a

threshold as selection criterion

τ0 = R/2 (4.2.1)

would work well.
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iv.) False positives decreases at first, and then increases with the increase of principal

components (See Figure 4.5)

Figure 4.5: PCs vs. False Positives

v.) This experiment can be improved which is to include the corresponding average of

CODEC values of selected predictors to see how likely the FOCI will select them.

This may give us insights about how FOCI works.
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4.2.8 Experiment 7: Variable selection in nonlinear functional relationship

Settings

Suppose we have Y = X2
3 +X10 +

√
|X17|+ Zβ + ε. We also have

X1, ..., X10 = Z ·B + ε1,

where Z = (Z1, Z2, Z3) ∼ U(0, 1), B is the coefficient matrix with elements generated

randomly from U(0, 1), ε and ε1 are the random noises with standard normal distribution.

Other definitions are the same as that of the Experiment 5 (Section 4.2.6). Besides, we

have

X11, ..., X20 |= Z,

this makes the effect of Z on X not dense.

To summarize, we have X = (X1, ..., X20), and

Xi =

Z ·B when i = 1, ..., 10

∼ N (0, 1) when i = 11, ..., 20
+ ε1,

Methods & Objectives

We desired to use the same resampling scheme without replacement to select the Markov

blanket. Besides, in this experiment we will try to calculate the average CODEC value of

the selected variables, which is

Average CODEC value of Xk = Γ :=

∑
γ

The size of the set of selected Xk
,

where γ is the CODEC value when Xk, k ∈ [s] is selected and its expression can be written

as CODEC(Y,Xk|Zest).

We also want to check whether the PCA estimation still works when there is nonlinearity

in the functional relationship between response Y and X.

What’s more, we tried the variational autoencoders with Gaussian prior which is intro-

duced in Section 2.4 to simulate the latent variables and put them directly as conditioning

set when running the FOCI algorithm.

Finally, we also want to check if the difference between the magnitudes of each signals

contributed to the response Y and the magnitudes of hidden confounders Z contributed

to the response affect the FOCI selection process. We re-state the formula of response Y

here:

Y = X2
3 +X10 +

√
|X17|+ Zβ + ε.

Here X2
3 refers to ’variable 1’, X10 refers to ’variable 2’,

√
|X17| refers to ’variable 3’, and

Zβ refers to ’hidden confounder’.
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To specify, we define the following three cases by changing β:

i.) If β ∼ U(0, 1), we say that hidden confounders and signals have the same magnitudes,

which is illustrated in Figure 4.6.

Figure 4.6: Kernel density of signals and confounders where they have same magnitudes
.

ii.) If β ∼ U(0, 0.01), we say that hidden confounders are dominated by the signals in

the context of magnitudes, which is illustrated in Figure 4.7.

Figure 4.7: Kernel density of signals and confounders where confounders are dominated
by the signals in the context of magnitude

.
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iii.) If β ∼ U(10, 20), we say that the signals are dominated by hidden confounders in

the context of magnitudes, which is illustrated in Figure 4.8.

Figure 4.8: Kernel density of signals and confounders where the signals are dominated by
confounders in the context of magnitude

.

Results using PCA

As for PCA estimator, we run from PC0 to PC20 with N1 = 10000 / N2 = 500 and using

resampling schme with R = 20. Besides, we will compare between the three magnitude

cases for N1 and N2.

Accordingly we generated six tables, which are given in the Table 4.10 - 4.15.
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X’s PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20

X1 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.19 0 0.00 1 0.20 0 0.00 0 0.00 0 0.00 2 0.38

X2 1 0.02 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.20 1 0.20 1 0.18 0 0.00 2 0.18 2 0.18 1 0.18 3 0.17 1 0.27 3 0.29 5 0.35 5 0.42

X3 20 0.47 20 0.57 20 0.58 20 0.57 20 0.56 20 0.53 20 0.52 20 0.50 20 0.48 20 0.47 20 0.46 20 0.45 20 0.44 20 0.44 20 0.43 20 0.43 20 0.43 20 0.43 20 0.47 20 0.51 20 0.55

X4 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.17 0 0.00 0 0.00 1 0.18 1 0.22 0 0.00 1 0.22 1 0.22 3 0.20 2 0.23 1 0.23 1 0.37 1 0.38

X5 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.19 0 0.00 0 0.00 2 0.17 3 0.17 2 0.19 1 0.18 3 0.18 2 0.16 2 0.19 1 0.18 1 0.19 1 0.20 1 0.31 3 0.39 1 0.44

X6 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.20 0 0.00 1 0.21 0 0.00 0 0.00 0 0.00 0 0.00 2 0.19 1 0.16 2 0.20 0 0.00 1 0.29 0 0.00 1 0.41

X7 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.18 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 4 0.22 1 0.26 3 0.23 1 0.26 0 0.00 2 0.42

X8 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.21 1 0.20 2 0.19 2 0.21 4 0.18 7 0.19 2 0.20 3 0.19 3 0.19 1 0.13 2 0.18 0 0.00 0 0.00 0 0.00 1 0.42

X9 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 0.20 1 0.15 1 0.19 1 0.19 3 0.20 0 0.00 2 0.19 4 0.22 3 0.28 3 0.27 5 0.37 1 0.44

X10 20 0.11 20 0.23 20 0.24 20 0.24 20 0.24 20 0.23 20 0.23 20 0.22 20 0.22 20 0.22 20 0.22 20 0.22 20 0.22 20 0.22 20 0.22 20 0.22 20 0.23 20 0.24 20 0.31 19 0.37 20 0.45

X11 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.16 0 0.00 1 0.18 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X12 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.22 0 0.00 1 0.16 0 0.00 1 0.14 2 0.18 3 0.20 1 0.18 0 0.00 0 0.00 1 0.40

X13 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.22 1 0.24 0 0.00 1 0.34 1 0.42

X14 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.19 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 0.45 1 0.43 0 0.00

X15 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.18 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.24 0 0.00 0 0.00 0 0.00

X16 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.21 0 0.00 2 0.20 1 0.18 1 0.16 2 0.17 1 0.24 0 0.00 1 0.42

X17 20 0.01 16 0.18 12 0.19 6 0.20 4 0.20 8 0.19 6 0.21 6 0.20 6 0.17 7 0.19 13 0.19 10 0.20 7 0.19 12 0.19 13 0.20 10 0.20 12 0.22 15 0.24 17 0.30 15 0.38 19 0.44

X18 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.20 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 0.18 1 0.25 0 0.00 0 0.00

X19 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.19 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.21 2 0.20 0 0.00 0 0.00 1 0.21 1 0.18 0 0.00

X20 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 0.18 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 0.16 1 0.18 0 0.00 0 0.00 1 0.21 2 0.26 1 0.32 0 0.00

Table 4.10: Frequency & CODEC value table from PC0 to PC20 when N = 10000 and
β ∼ U(0, 1) using PCA as latent variable estimator. The signals X3, X10, and X17 are
highlighted with light indigo. For each principal components included, i.e. PCk, the left
side with bold face shows the frequencies of FOCI selection (max. 20), the right side
shows the corresponding averaged CODEC value γ. The signals X3, X10, and X17 are
highlighted. The following tables follow the same rule.

X’s PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20

X1 0 0.00 0 0.00 2 0.17 2 0.20 4 0.19 2 0.17 3 0.21 2 0.16 2 0.19 2 0.16 3 0.20 5 0.20 0 0.00 5 0.23 4 0.30 4 0.24 1 0.17 2 0.18 4 0.15 3 0.17 0 0.00

X2 0 0.00 1 0.08 0 0.00 1 0.19 0 0.00 4 0.20 0 0.00 5 0.15 6 0.19 2 0.15 5 0.24 1 0.27 4 0.27 0 0.00 2 0.18 2 0.25 4 0.27 3 0.32 4 0.23 5 0.26 5 0.18

X3 20 0.37 20 0.40 20 0.41 19 0.39 19 0.39 20 0.34 19 0.32 19 0.31 17 0.30 18 0.30 17 0.31 17 0.29 17 0.32 15 0.28 17 0.28 16 0.28 18 0.28 16 0.28 17 0.28 17 0.28 16 0.27

X4 3 -0.04 1 0.19 2 0.23 2 0.20 0 0.00 1 0.24 0 0.00 3 0.16 4 0.15 3 0.09 2 0.27 6 0.17 9 0.22 8 0.25 5 0.24 3 0.30 7 0.23 8 0.21 4 0.21 3 0.16 3 0.22

X5 1 0.06 0 0.00 3 0.11 1 0.18 2 0.08 3 0.09 2 0.23 2 0.11 2 0.16 0 0.00 2 0.19 0 0.00 3 0.20 2 0.22 2 0.26 0 0.00 3 0.26 3 0.26 1 0.30 1 0.31 3 0.27

X6 0 0.00 4 0.11 3 0.14 5 0.17 4 0.19 5 0.21 1 0.06 2 0.22 3 0.26 1 0.06 1 0.01 3 0.21 2 0.12 1 0.14 3 0.24 2 0.17 2 0.21 4 0.16 0 0.00 0 0.00 0 0.00

X7 1 -0.09 0 0.00 0 0.00 2 0.29 3 0.19 4 0.08 2 0.11 2 0.16 3 0.20 5 0.19 2 0.27 3 0.25 4 0.19 2 0.10 5 0.28 4 0.21 3 0.27 3 0.32 4 0.23 3 0.35 2 0.20

X8 0 0.00 2 0.13 4 0.19 4 0.19 4 0.21 3 0.14 3 0.17 3 0.21 3 0.18 2 0.19 2 0.28 2 0.15 3 0.24 4 0.19 0 0.00 4 0.25 2 0.25 3 0.17 3 0.14 4 0.24 5 0.18

X9 3 -0.03 1 0.15 0 0.00 1 0.16 3 0.15 2 0.25 4 0.24 5 0.21 2 0.02 4 0.18 3 0.19 4 0.17 2 0.26 5 0.17 3 0.22 1 0.27 1 0.24 3 0.10 1 0.16 0 0.00 3 0.16

X10 19 0.16 19 0.23 18 0.22 16 0.29 16 0.28 16 0.28 14 0.22 15 0.24 14 0.24 12 0.23 15 0.23 13 0.27 14 0.25 11 0.24 9 0.24 13 0.24 16 0.25 13 0.24 12 0.20 9 0.21 13 0.21

X11 0 0.00 0 0.00 2 0.14 2 0.26 3 0.13 2 0.17 3 0.17 2 0.25 1 0.14 0 0.00 2 0.28 1 0.30 3 0.17 1 0.19 4 0.25 0 0.00 3 0.25 5 0.23 6 0.29 6 0.22 3 0.25

X12 0 0.00 0 0.00 0 0.00 2 0.14 1 0.22 3 0.21 2 0.16 2 0.24 1 0.12 2 0.17 2 0.14 1 0.12 1 0.21 1 0.27 1 0.26 0 0.00 1 0.27 2 0.13 1 0.01 0 0.00 1 0.20

X13 1 -0.01 0 0.00 0 0.00 1 0.26 0 0.00 0 0.00 0 0.00 0 0.00 2 0.14 0 0.00 0 0.00 0 0.00 1 0.11 2 0.19 1 0.32 0 0.00 0 0.00 2 0.18 0 0.00 1 0.20 0 0.00

X14 1 -0.10 2 0.06 1 0.11 0 0.00 2 0.15 2 0.29 3 0.22 3 0.25 2 0.21 3 0.23 6 0.19 1 0.17 3 0.21 2 0.22 4 0.23 5 0.25 5 0.19 3 0.31 6 0.18 5 0.21 3 0.18

X15 2 -0.00 0 0.00 1 0.08 2 0.25 0 0.00 1 0.31 6 0.22 4 0.17 1 0.15 2 0.19 2 0.18 2 0.16 0 0.00 2 0.09 3 0.21 1 0.23 4 0.20 3 0.15 4 0.11 2 0.16 2 0.11

X16 1 0.03 1 0.03 3 0.18 1 0.22 3 0.16 1 0.19 1 0.08 1 0.27 3 0.11 1 0.21 3 0.29 3 0.20 3 0.26 2 0.37 2 0.23 4 0.29 5 0.29 4 0.23 3 0.31 3 0.16 2 0.08

X17 3 0.05 0 0.00 1 -0.04 2 0.24 3 0.14 3 0.19 4 0.28 3 0.26 3 0.17 1 0.23 1 0.25 5 0.15 5 0.20 5 0.26 8 0.28 6 0.23 3 0.28 8 0.22 4 0.20 4 0.18 3 0.29

X18 0 0.00 0 0.00 3 0.06 1 0.19 2 0.16 1 0.30 2 0.30 0 0.00 0 0.00 0 0.00 2 0.29 3 0.27 1 0.08 3 0.26 2 0.17 3 0.27 2 0.30 0 0.00 1 0.08 1 0.39 6 0.24

X19 0 0.00 2 0.13 0 0.00 0 0.00 0 0.00 1 0.19 2 0.16 1 0.16 0 0.00 2 0.19 0 0.00 0 0.00 1 0.12 2 0.17 1 0.28 1 0.10 1 0.06 1 0.16 4 0.16 3 0.20 3 0.16

X20 0 0.00 0 0.00 1 0.09 2 0.16 0 0.00 3 0.21 2 0.11 5 0.14 4 0.15 3 0.13 2 0.26 2 0.13 2 0.23 3 0.20 2 0.26 4 0.25 7 0.22 4 0.14 1 0.35 4 0.27 3 0.20

Table 4.11: Frequency & CODEC value table from PC0 to PC20 when N = 500 and
β ∼ U(0, 1) using PCA as latent variable estimator. The signals X3, X10, and X17 are
highlighted with light indigo.
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X’s PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20

X1 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.18 0 0.00 1 0.19 0 0.00 0 0.00 1 0.27 2 0.37

X2 1 0.02 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.18 1 0.16 0 0.00 2 0.17 4 0.18 2 0.17 4 0.17 2 0.20 2 0.30 5 0.33 5 0.41

X3 20 0.46 20 0.55 20 0.56 20 0.55 20 0.54 20 0.52 20 0.50 20 0.48 20 0.47 20 0.45 20 0.44 20 0.43 20 0.43 20 0.42 20 0.42 20 0.41 20 0.41 20 0.42 20 0.46 20 0.50 20 0.54

X4 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.16 0 0.00 0 0.00 1 0.17 1 0.20 0 0.00 0 0.00 1 0.20 3 0.19 1 0.23 2 0.22 1 0.36 1 0.37

X5 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.17 0 0.00 0 0.00 3 0.16 2 0.14 2 0.17 1 0.16 3 0.16 2 0.14 2 0.17 1 0.17 1 0.17 1 0.19 1 0.30 3 0.38 1 0.43

X6 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.19 0 0.00 0 0.00 0 0.00 0 0.00 1 0.15 0 0.00 2 0.18 0 0.00 3 0.22 0 0.00 1 0.40

X7 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 4 0.20 0 0.00 2 0.23 1 0.24 0 0.00 3 0.41

X8 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 0.18 1 0.18 2 0.17 3 0.18 4 0.17 7 0.18 3 0.17 3 0.17 2 0.16 2 0.13 2 0.17 0 0.00 0 0.00 0 0.00 1 0.41

X9 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.18 0 0.00 0 0.00 2 0.18 0 0.00 2 0.17 1 0.18 3 0.18 1 0.21 1 0.21 4 0.20 3 0.27 3 0.26 4 0.33 1 0.43

X10 20 0.11 20 0.21 20 0.22 20 0.22 20 0.22 20 0.22 20 0.22 20 0.21 20 0.21 20 0.20 20 0.21 20 0.21 20 0.21 20 0.20 20 0.21 20 0.21 20 0.22 20 0.23 20 0.29 19 0.36 20 0.44

X11 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.15 0 0.00 1 0.16 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X12 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.20 0 0.00 1 0.15 0 0.00 1 0.13 2 0.17 4 0.19 0 0.00 0 0.00 0 0.00 1 0.39

X13 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.15 0 0.00 0 0.00 1 0.20 1 0.22 1 0.25 1 0.33 0 0.00

X14 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.17 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.24 2 0.43 1 0.42 0 0.00

X15 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.17 1 0.15 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.22 0 0.00 0 0.00 0 0.00

X16 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.20 0 0.00 2 0.19 1 0.17 1 0.14 1 0.17 3 0.21 0 0.00 1 0.40

X17 20 0.01 15 0.17 11 0.17 5 0.19 5 0.18 9 0.18 5 0.20 6 0.19 6 0.15 7 0.17 12 0.18 11 0.18 8 0.17 11 0.18 12 0.18 11 0.19 12 0.21 15 0.22 16 0.30 15 0.36 18 0.43

X18 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.19 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 0.17 1 0.23 0 0.00 0 0.00

X19 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.17 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 0.18 0 0.00 0 0.00 1 0.20 1 0.16 0 0.00

X20 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 0.17 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.15 1 0.16 0 0.00 0 0.00 1 0.20 2 0.24 1 0.31 0 0.00

Table 4.12: Frequency & CODEC value table from PC0 to PC20 when N = 10000 and
β ∼ U(0, 0.01) using PCA as latent variable estimator. The signals X3, X10, and X17 are
highlighted with light indigo.

X’s PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20

X1 1 -0.01 0 0.00 3 0.09 2 0.16 4 0.14 4 0.16 4 0.19 1 0.14 3 0.11 2 0.07 5 0.17 7 0.16 2 0.22 3 0.15 1 0.20 2 0.27 2 0.13 5 0.13 3 0.15 2 0.15 0 0.00

X2 0 0.00 0 0.00 0 0.00 1 0.12 1 0.10 2 0.20 0 0.00 1 -0.05 4 0.18 4 0.11 3 0.20 2 0.15 3 0.24 1 0.26 1 0.24 2 0.23 5 0.21 8 0.17 3 0.19 5 0.24 5 0.17

X3 20 0.38 20 0.37 20 0.38 19 0.35 19 0.34 20 0.30 19 0.28 18 0.28 18 0.26 18 0.26 19 0.26 18 0.26 18 0.28 17 0.25 19 0.26 15 0.26 18 0.26 18 0.24 18 0.26 17 0.27 17 0.25

X4 1 -0.06 2 0.11 2 0.19 2 0.13 0 0.00 1 0.17 1 0.12 3 0.02 3 0.12 6 0.13 4 0.13 6 0.12 7 0.17 6 0.21 3 0.13 3 0.18 5 0.15 5 0.14 5 0.20 5 0.18 4 0.23

X5 1 0.00 0 0.00 4 0.09 1 0.13 3 0.05 1 0.03 2 0.20 5 0.18 2 0.10 1 0.14 2 0.08 0 0.00 2 0.17 3 0.24 3 0.20 0 0.00 2 0.22 1 0.23 1 0.24 1 0.13 3 0.22

X6 0 0.00 3 0.05 2 0.12 4 0.12 5 0.16 4 0.16 1 0.19 4 0.14 2 0.30 1 0.33 1 -0.02 3 0.17 1 0.07 1 0.16 0 0.00 1 0.26 1 0.31 1 0.12 0 0.00 1 0.04 3 0.14

X7 0 0.00 1 0.21 0 0.00 2 0.20 2 0.21 1 0.12 0 0.00 1 -0.02 3 0.06 5 0.17 1 0.24 5 0.20 3 0.24 2 0.21 5 0.17 3 0.14 4 0.16 4 0.16 3 0.24 5 0.22 4 0.15

X8 2 -0.03 2 0.09 5 0.15 1 0.19 3 0.11 3 0.06 2 0.07 3 0.15 5 0.12 4 0.10 4 0.19 2 0.12 4 0.16 2 0.22 1 0.36 3 0.20 4 0.19 6 0.21 5 0.20 5 0.15 6 0.19

X9 2 -0.03 3 0.11 0 0.00 0 0.00 1 0.19 4 0.15 2 0.20 4 0.13 1 0.11 4 0.13 5 0.17 4 0.08 2 0.18 4 0.18 4 0.16 0 0.00 0 0.00 3 0.13 0 0.00 2 0.18 3 0.08

X10 19 0.16 20 0.20 19 0.20 16 0.26 14 0.26 15 0.25 13 0.21 17 0.21 16 0.21 15 0.19 17 0.20 16 0.23 17 0.21 12 0.20 11 0.21 11 0.21 9 0.20 14 0.18 11 0.17 12 0.19 14 0.21

X11 0 0.00 0 0.00 1 0.20 1 0.33 1 0.04 4 0.11 3 0.13 5 0.17 0 0.00 0 0.00 3 0.21 3 0.18 1 0.24 2 0.18 4 0.17 0 0.00 3 0.20 4 0.16 6 0.24 3 0.15 5 0.18

X12 1 -0.06 0 0.00 0 0.00 1 0.01 0 0.00 5 0.16 2 0.09 2 0.19 1 0.04 1 0.15 1 -0.01 1 0.25 0 0.00 1 0.25 2 0.23 1 0.08 1 0.04 0 0.00 1 0.23 1 0.23 4 0.17

X13 1 -0.06 0 0.00 0 0.00 1 0.18 0 0.00 0 0.00 0 0.00 0 0.00 1 0.11 1 0.12 0 0.00 0 0.00 2 0.10 2 0.15 2 0.24 1 0.33 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X14 2 -0.10 1 0.05 1 0.06 0 0.00 1 0.08 0 0.00 2 0.18 4 0.16 1 0.18 2 0.19 4 0.21 1 0.14 2 0.16 4 0.23 4 0.20 8 0.20 5 0.23 6 0.20 6 0.22 5 0.18 4 0.21

X15 0 0.00 0 0.00 0 0.00 1 0.13 0 0.00 1 0.24 4 0.23 3 0.20 1 0.07 2 0.15 3 0.04 1 0.14 5 0.14 3 0.13 2 0.16 1 0.20 3 0.14 4 0.10 3 0.11 3 0.18 1 0.14

X16 1 0.01 0 0.00 1 0.39 1 0.17 3 0.13 1 0.16 1 0.04 1 0.21 2 0.12 4 0.12 3 0.24 4 0.18 3 0.20 2 0.33 2 0.27 2 0.28 1 0.38 1 0.32 4 0.22 4 0.20 2 0.07

X17 2 0.06 0 0.00 1 0.12 3 0.19 2 0.08 5 0.15 4 0.22 5 0.17 4 0.13 4 0.14 3 0.17 5 0.11 4 0.21 6 0.21 8 0.24 7 0.17 7 0.24 9 0.21 5 0.16 5 0.19 6 0.21

X18 0 0.00 1 0.03 2 0.15 1 0.18 2 0.13 3 0.17 2 0.26 1 0.16 4 0.11 1 0.18 2 0.24 2 0.22 1 0.17 3 0.20 1 0.21 5 0.16 3 0.25 0 0.00 3 0.11 3 0.23 6 0.24

X19 0 0.00 2 0.08 1 -0.05 1 0.13 0 0.00 1 0.12 1 0.13 2 0.10 0 0.00 1 0.12 0 0.00 1 0.18 4 0.13 2 0.15 2 0.13 1 0.24 3 0.10 2 0.18 1 0.18 2 0.15 3 0.11

X20 0 0.00 0 0.00 1 0.04 3 0.09 4 0.15 3 0.12 4 0.05 4 0.10 3 0.14 2 0.09 2 0.25 4 0.15 2 0.13 3 0.13 2 0.16 3 0.21 3 0.17 4 0.14 3 0.24 3 0.23 4 0.17

Table 4.13: Frequency & CODEC value table from PC0 to PC20 when N = 500 and
β ∼ U(0, 0.01) using PCA as latent variable estimator. The signals X3, X10, and X17 are
highlighted with light indigo.

X’s PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20

X1 11 0.05 0 0.00 2 0.40 1 0.42 1 0.41 1 0.41 0 0.00 0 0.00 2 0.35 2 0.35 0 0.00 1 0.33 1 0.37 1 0.32 1 0.29 3 0.31 1 0.31 1 0.30 0 0.00 2 0.31 5 0.33

X2 5 0.05 1 0.40 1 0.41 1 0.36 2 0.37 1 0.40 2 0.39 2 0.35 1 0.38 0 0.00 1 0.31 2 0.30 5 0.31 3 0.34 2 0.34 3 0.31 3 0.31 7 0.31 5 0.33 9 0.32 9 0.30

X3 20 0.21 20 0.51 20 0.51 20 0.50 20 0.49 20 0.47 20 0.46 20 0.44 20 0.44 20 0.43 20 0.41 20 0.40 20 0.39 20 0.38 20 0.37 20 0.37 20 0.37 20 0.36 20 0.35 20 0.34 20 0.34

X4 13 0.04 2 0.39 2 0.39 0 0.00 2 0.41 1 0.41 2 0.36 0 0.00 0 0.00 1 0.36 2 0.33 2 0.31 4 0.31 4 0.32 5 0.33 0 0.00 6 0.31 7 0.30 9 0.29 6 0.31 6 0.30

X5 2 0.02 0 0.00 2 0.41 1 0.36 1 0.36 2 0.35 0 0.00 0 0.00 1 0.37 2 0.36 4 0.33 3 0.35 2 0.32 2 0.34 3 0.30 3 0.32 1 0.32 3 0.30 5 0.31 1 0.30 5 0.32

X6 17 0.05 2 0.40 0 0.00 4 0.40 1 0.38 3 0.37 0 0.00 1 0.38 3 0.37 3 0.35 2 0.34 2 0.32 4 0.32 3 0.31 3 0.31 3 0.32 4 0.31 2 0.29 5 0.29 2 0.30 5 0.31

X7 5 0.03 2 0.42 2 0.45 3 0.38 2 0.38 3 0.37 4 0.38 2 0.34 1 0.35 1 0.34 2 0.32 0 0.00 2 0.32 1 0.35 2 0.29 4 0.30 1 0.28 4 0.29 4 0.33 3 0.30 4 0.29

X8 2 0.04 3 0.41 1 0.38 1 0.42 2 0.39 1 0.43 2 0.37 3 0.37 1 0.37 3 0.37 2 0.35 1 0.32 1 0.32 1 0.34 9 0.32 6 0.32 1 0.31 5 0.30 4 0.30 5 0.30 1 0.30

X9 1 0.02 2 0.41 1 0.43 2 0.40 1 0.40 1 0.35 4 0.36 1 0.34 2 0.37 2 0.35 2 0.34 0 0.00 2 0.31 3 0.31 6 0.32 1 0.31 8 0.30 3 0.33 5 0.31 8 0.31 8 0.30

X10 20 0.05 2 0.41 4 0.38 6 0.41 6 0.41 6 0.39 7 0.38 9 0.36 6 0.36 9 0.36 9 0.35 8 0.34 6 0.34 7 0.33 8 0.31 10 0.31 11 0.32 10 0.31 15 0.31 10 0.31 10 0.32

X11 0 0.00 2 0.40 0 0.00 2 0.38 1 0.41 1 0.38 0 0.00 2 0.36 1 0.36 0 0.00 0 0.00 1 0.31 0 0.00 0 0.00 0 0.00 1 0.33 0 0.00 1 0.25 1 0.33 1 0.31 1 0.31

X12 0 0.00 0 0.00 1 0.41 0 0.00 0 0.00 1 0.43 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.34 1 0.35 2 0.31 0 0.00 1 0.29 1 0.31 0 0.00 2 0.33 0 0.00 0 0.00

X13 0 0.00 0 0.00 0 0.00 1 0.39 0 0.00 1 0.33 1 0.35 2 0.35 3 0.34 1 0.35 4 0.33 2 0.35 9 0.33 3 0.33 1 0.33 5 0.31 3 0.31 2 0.30 4 0.30 1 0.27 1 0.30

X14 0 0.00 1 0.42 2 0.39 0 0.00 0 0.00 1 0.39 0 0.00 0 0.00 1 0.35 0 0.00 2 0.33 3 0.35 1 0.34 0 0.00 1 0.34 0 0.00 3 0.30 2 0.30 2 0.33 3 0.31 1 0.31

X15 0 0.00 0 0.00 1 0.42 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.32 1 0.36 2 0.32 0 0.00 1 0.32 1 0.35 4 0.32 1 0.28 1 0.34 1 0.30 1 0.33 0 0.00 1 0.28

X16 1 -0.01 1 0.36 1 0.43 1 0.39 2 0.38 2 0.40 2 0.40 3 0.37 1 0.36 3 0.34 1 0.34 2 0.33 2 0.31 1 0.31 0 0.00 1 0.36 5 0.32 3 0.30 0 0.00 3 0.30 4 0.31

X17 0 0.00 4 0.40 0 0.00 2 0.41 1 0.38 3 0.36 2 0.38 3 0.39 1 0.33 4 0.35 0 0.00 2 0.31 3 0.33 3 0.32 3 0.33 2 0.32 3 0.32 6 0.31 4 0.28 3 0.31 7 0.32

X18 0 0.00 2 0.40 0 0.00 1 0.37 2 0.38 1 0.38 0 0.00 1 0.34 0 0.00 0 0.00 1 0.33 0 0.00 1 0.32 1 0.34 2 0.33 0 0.00 2 0.30 1 0.27 0 0.00 0 0.00 0 0.00

X19 2 -0.02 0 0.00 2 0.41 1 0.40 1 0.39 1 0.37 2 0.36 3 0.40 3 0.39 1 0.33 0 0.00 1 0.35 2 0.34 2 0.33 3 0.30 2 0.28 2 0.32 1 0.29 1 0.29 2 0.31 1 0.32

X20 0 0.00 4 0.39 0 0.00 1 0.40 0 0.00 0 0.00 2 0.38 5 0.36 3 0.37 4 0.36 2 0.36 3 0.33 3 0.33 2 0.31 2 0.32 2 0.32 3 0.31 3 0.29 2 0.30 4 0.30 2 0.31

Table 4.14: Frequency & CODEC value table from PC0 to PC20 when N = 10000 and
β ∼ U(10, 20) using PCA as latent variable estimator. The signals X3, X10, and X17 are
highlighted with light indigo.
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X’s PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20

X1 7 0.12 2 0.41 3 0.43 1 0.35 0 0.00 2 0.38 4 0.27 3 0.33 1 0.29 4 0.30 3 0.23 6 0.29 6 0.25 4 0.23 9 0.22 2 0.22 6 0.20 4 0.28 6 0.25 2 0.26 3 0.30

X2 0 0.00 0 0.00 2 0.38 0 0.00 4 0.34 3 0.20 4 0.37 3 0.28 6 0.23 5 0.31 6 0.28 4 0.23 3 0.27 4 0.25 4 0.29 3 0.34 2 0.15 4 0.19 4 0.25 3 0.24 5 0.21

X3 9 0.13 8 0.38 3 0.31 5 0.43 7 0.42 6 0.32 6 0.30 3 0.34 6 0.27 8 0.31 8 0.31 5 0.27 4 0.34 11 0.25 4 0.25 6 0.24 8 0.30 6 0.29 7 0.28 7 0.25 9 0.24

X4 3 0.13 3 0.39 5 0.35 5 0.40 4 0.26 1 0.35 2 0.31 3 0.24 3 0.17 3 0.24 4 0.33 4 0.27 3 0.19 3 0.26 6 0.24 5 0.24 6 0.26 0 0.00 7 0.29 9 0.24 10 0.25

X5 5 0.07 3 0.30 0 0.00 4 0.40 4 0.24 4 0.29 7 0.24 5 0.29 4 0.41 5 0.40 4 0.30 4 0.31 3 0.20 2 0.32 5 0.27 2 0.27 5 0.24 4 0.22 8 0.20 6 0.24 4 0.23

X6 5 0.13 4 0.41 2 0.30 5 0.33 3 0.38 5 0.22 3 0.27 5 0.29 3 0.22 5 0.25 3 0.31 5 0.31 2 0.40 8 0.30 6 0.29 4 0.33 6 0.20 5 0.25 5 0.24 7 0.18 8 0.22

X7 2 -0.00 4 0.38 3 0.45 5 0.37 0 0.00 0 0.00 2 0.20 2 0.40 2 0.41 2 0.47 2 0.23 4 0.25 2 0.34 6 0.21 4 0.29 3 0.16 3 0.29 1 0.35 1 0.11 5 0.12 1 0.23

X8 4 0.05 1 0.37 2 0.43 3 0.41 1 0.23 1 0.19 4 0.31 2 0.41 4 0.30 5 0.34 2 0.29 2 0.26 6 0.30 5 0.30 5 0.22 1 0.28 1 0.08 1 0.37 2 0.29 2 0.11 2 0.15

X9 2 -0.10 3 0.33 2 0.23 2 0.31 1 0.18 6 0.33 1 0.47 2 0.29 4 0.29 3 0.28 6 0.25 5 0.18 3 0.26 2 0.27 4 0.26 2 0.32 5 0.20 5 0.26 6 0.21 4 0.22 3 0.24

X10 6 0.10 1 0.37 3 0.35 2 0.36 3 0.36 3 0.29 2 0.31 5 0.25 3 0.37 3 0.44 3 0.34 3 0.31 3 0.30 4 0.27 4 0.19 3 0.34 6 0.18 5 0.27 4 0.26 2 0.34 3 0.24

X11 0 0.00 1 0.32 3 0.44 1 0.38 4 0.32 4 0.23 0 0.00 1 0.15 3 0.31 3 0.29 3 0.27 4 0.26 3 0.23 4 0.20 4 0.24 4 0.25 5 0.28 5 0.28 4 0.22 5 0.19 5 0.27

X12 1 0.02 3 0.38 1 0.40 1 0.47 2 0.29 1 0.20 1 0.22 2 0.19 3 0.26 4 0.33 4 0.25 4 0.30 1 0.34 3 0.25 2 0.30 1 0.24 1 0.24 0 0.00 0 0.00 0 0.00 0 0.00

X13 0 0.00 0 0.00 0 0.00 0 0.00 2 0.22 1 0.16 2 0.34 5 0.30 2 0.32 1 0.20 1 0.25 0 0.00 4 0.30 4 0.18 3 0.18 2 0.34 1 0.18 1 0.27 2 0.29 2 0.39 1 0.15

X14 0 0.00 2 0.35 1 0.28 2 0.34 2 0.33 6 0.38 2 0.27 4 0.28 2 0.31 3 0.22 2 0.26 2 0.27 6 0.29 2 0.28 3 0.22 3 0.32 3 0.26 1 0.11 3 0.25 3 0.20 2 0.29

X15 1 0.17 2 0.41 2 0.41 0 0.00 3 0.24 2 0.30 3 0.37 2 0.42 2 0.23 2 0.38 2 0.15 5 0.27 6 0.30 3 0.26 6 0.31 5 0.19 4 0.32 3 0.32 5 0.28 5 0.19 4 0.30

X16 1 0.03 2 0.45 2 0.50 4 0.34 4 0.35 4 0.37 4 0.33 1 0.34 3 0.23 3 0.31 2 0.33 4 0.30 0 0.00 5 0.21 4 0.25 5 0.31 3 0.34 3 0.26 3 0.22 2 0.18 3 0.21

X17 1 0.09 3 0.32 1 0.17 1 0.25 2 0.33 3 0.27 4 0.35 5 0.35 5 0.30 6 0.30 6 0.30 5 0.32 6 0.33 6 0.26 6 0.27 7 0.29 4 0.29 4 0.26 6 0.21 4 0.20 0 0.00

X18 1 -0.02 1 0.23 2 0.31 2 0.41 1 0.47 4 0.29 2 0.36 3 0.34 4 0.29 0 0.00 2 0.26 1 0.29 2 0.13 2 0.33 1 0.31 2 0.26 2 0.14 0 0.00 1 0.18 0 0.00 2 0.22

X19 1 -0.03 2 0.25 1 0.47 0 0.00 0 0.00 0 0.00 1 0.32 0 0.00 2 0.24 2 0.33 1 0.19 2 0.29 1 0.17 2 0.30 2 0.27 3 0.28 5 0.20 4 0.24 4 0.27 4 0.20 1 0.27

X20 0 0.00 2 0.32 1 0.29 3 0.35 0 0.00 1 0.29 2 0.12 1 0.30 0 0.00 4 0.37 1 0.25 0 0.00 1 0.35 1 0.29 2 0.30 1 0.17 1 0.09 2 0.28 1 0.30 1 0.10 2 0.28

Table 4.15: Frequency & CODEC value table from PC0 to PC20 when N = 500 and
β ∼ U(10, 20) using PCA as latent variable estimator. The signals X3, X10, and X17 are
highlighted with light indigo.
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Results using variational autoencoder

Our VAE training process can be summarized as following:

• First sample data with given functional relationship and randomly split the whole

dataset, which is the data matrix X ∈ Rn×p where the cardinality of training set :

the cardinality of validation set = 4 : 1.

• Feed the mini-batch data into the variational autoencoder and started to train using

the ELBO objective 2.4.3 for each epoch.

• Update the parameters using gradient-based optimization, in our context we used

Adam optimizer (Kingma and Ba, 2017).

• Stop training if the validation loss does not keep decreasing within five epochs.

Our VAE architecture can be summarized as the following table and figure:

Layer (type) Output Shape Remarks

Input layer (batch_size, 20) batch_size refers to size of mini-batch

Linear 1 (batch_size, 256)

Softplus 1 (batch_size, 256) Activation function

Linear 2 (batch_size, 256)

BatchNorm1d 1 (batch_size, 128) Batch normalization

Softplus 2 (batch_size, 128) Activation function

Linear 3 (batch_size, 64)

BatchNorm1d 2 (batch_size, 64) Batch normalization

Softplus 3 (batch_size, 64) Activation function

Linear 4 (batch_size, 8)

Linear µ (batch_size, lat_dim) Encode the mean of Z

Linear σ (batch_size, lat_dim) Encode the std. variance of Z

Linear mapping (batch_size, 8) Map the (-1, lat_dim) to (-1, 8) tensor

Linear 5 (batch_size, 8)

Linear 6 (batch_size, 16)

Softplus 4 (batch_size, 16) Activation function

BatchNorm1d 3 (batch_size, 16) Batch normalization

Linear 7 (batch_size, 64)

Softplus 5 (batch_size, 64) Activation function

BatchNorm1d 4 (batch_size, 64) Batch normalization

Linear 8 (batch_size, 128)

Softplus 6 (batch_size, 128) Activation function

BatchNorm1d 5 (batch_size, 128) Batch normalization

Linear 9 (batch_size, 20) Output layer

Table 4.16: Variational autoencoder architecture with mini-batch input. The latent space
encoding and mapping layers are highlighted with light indigo and activation functions
highlighted with light gray. Note that our dataset has the dimension n × p. Besides,
lat_dim refers to the dimension of latent space, (−1, x) refers to a tensor (with N data
points) with dimension N

x × x.

After training the VAE, we then save its architecture and sampling from the estimated
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posterior distribution to generate Zest.

As for VAE estimator, we run from including the 1-dimensional estimated confounders to

including 20-dimensional estimated confounders with N1 = 10000 / N2 = 500 and using

resampling scheme with R = 20. In addition, we use three different type of β which is

introduced beforehand.

Accordingly we generated another six tables, which are given in the Table 4.17 - 4.22.

X’s D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

X1 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.03 0 0.00 0 0.00 0 0.00 0 0.00 2 -0.00 1 -0.01 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X2 2 0.02 0 0.00 0 0.00 0 0.00 1 0.01 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 -0.00 0 0.00

X3 20 0.47 20 0.46 20 0.47 20 0.46 20 0.46 20 0.47 20 0.47 20 0.45 20 0.46 20 0.44 20 0.45 20 0.45 20 0.44 20 0.44 20 0.44 20 0.42 20 0.44 20 0.44 20 0.43 20 0.43 20 0.42

X4 0 0.00 0 0.00 0 0.00 1 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.02 2 0.01 0 0.00 1 -0.02

X5 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.01 1 0.02

X6 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 -0.01 0 0.00 1 -0.01 1 0.01 0 0.00 1 0.01 5 0.01 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X7 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.02 0 0.00 0 0.00 0 0.00 1 -0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X8 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 0.01 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 -0.02 0 0.00 0 0.00 1 0.01 0 0.00 1 0.01 0 0.00 0 0.00

X9 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.01 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X10 20 0.11 20 0.11 20 0.11 20 0.10 20 0.11 20 0.11 20 0.10 20 0.10 20 0.11 20 0.10 20 0.11 20 0.11 20 0.11 20 0.11 20 0.10 20 0.10 20 0.11 20 0.11 20 0.10 20 0.11 20 0.10

X11 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X12 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X13 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 -0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X14 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X15 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 0.01 2 0.00 0 0.00

X16 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.01 0 0.00 0 0.00 0 0.00 0 0.00

X17 20 0.01 20 0.01 18 0.01 19 0.01 18 0.02 19 0.01 14 0.02 14 0.02 15 0.02 17 0.01 11 0.01 14 0.03 17 0.01 16 0.02 8 0.02 19 0.01 16 0.00 9 0.01 10 -0.00 6 -0.00 20 0.01

X18 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 -0.01 0 0.00

X19 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.00 0 0.00 1 -0.00 0 0.00 0 0.00 0 0.00 0 0.00

X20 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.01 0 0.00 0 0.00 0 0.00 1 -0.01 0 0.00 2 0.01 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

Table 4.17: Frequency & CODEC value table from D1 (1-dimensional) to D20 (20-
dimensional) when N = 10000 and β ∼ U(0, 1) using VAE as latent variable estimator.
The signals X3, X10, and X17 are highlighted with light indigo. For each principal com-
ponents included, i.e. Dk, the left side with bold face shows the frequencies of FOCI
selection (max. 20), the right side shows the corresponding averaged CODEC value γ.
The following tables follow the same rule.

X’s D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

X1 0 0.00 2 -0.00 2 0.05 0 0.00 1 0.07 0 0.00 1 0.04 2 0.06 0 0.00 2 0.02 2 0.03 2 0.10 3 0.18 0 0.00 3 0.01 1 0.14 0 0.00 2 0.03 2 0.05 1 0.03 3 0.09

X2 0 0.00 1 -0.06 1 0.11 1 0.07 0 0.00 2 0.00 0 0.00 1 -0.15 1 -0.15 0 0.00 0 0.00 1 -0.03 1 0.04 0 0.00 1 0.02 1 0.06 0 0.00 0 0.00 1 0.13 0 0.00 1 0.18

X3 20 0.37 20 0.34 20 0.32 20 0.35 20 0.34 20 0.29 20 0.31 20 0.28 20 0.34 20 0.36 20 0.34 20 0.29 20 0.35 20 0.32 20 0.30 20 0.33 20 0.25 20 0.21 20 0.35 20 0.32 20 0.34

X4 3 -0.04 1 0.02 1 -0.02 4 0.02 0 0.00 1 -0.13 0 0.00 0 0.00 2 -0.06 1 0.20 2 -0.01 1 -0.03 1 0.15 1 0.10 0 0.00 1 0.04 1 -0.12 0 0.00 2 0.05 0 0.00 0 0.00

X5 1 0.06 2 -0.01 1 0.02 1 -0.07 4 -0.02 0 0.00 0 0.00 4 -0.03 0 0.00 2 0.04 0 0.00 2 -0.02 0 0.00 0 0.00 1 0.11 2 0.01 1 0.09 0 0.00 0 0.00 0 0.00 1 0.05

X6 0 0.00 3 0.02 1 0.06 3 0.11 1 0.00 5 0.09 2 0.03 3 0.06 1 0.14 1 0.01 3 0.08 3 0.06 1 0.06 6 0.06 2 -0.01 4 -0.01 5 0.05 6 -0.04 0 0.00 3 0.12 5 0.12

X7 1 -0.09 1 0.01 1 0.05 1 0.01 2 -0.06 0 0.00 0 0.00 2 -0.03 1 0.07 3 0.06 1 0.03 0 0.00 0 0.00 0 0.00 2 -0.01 4 -0.02 1 0.02 1 -0.03 0 0.00 0 0.00 1 -0.01

X8 0 0.00 1 0.02 0 0.00 0 0.00 0 0.00 0 0.00 1 0.04 0 0.00 1 0.04 1 0.01 0 0.00 3 -0.06 0 0.00 0 0.00 1 -0.03 0 0.00 1 0.10 4 -0.04 1 -0.01 1 0.03 1 0.23

X9 3 -0.03 3 -0.08 2 -0.06 1 0.06 1 -0.08 2 0.02 1 0.00 0 0.00 2 0.10 2 0.05 1 0.04 2 0.10 1 0.17 0 0.00 1 0.04 1 -0.14 1 0.00 4 -0.07 0 0.00 3 -0.06 2 0.02

X10 19 0.16 19 0.17 20 0.16 18 0.15 20 0.14 20 0.15 20 0.15 20 0.13 20 0.16 18 0.14 19 0.08 20 0.13 20 0.20 18 0.10 20 0.08 20 0.15 20 0.14 20 0.06 20 0.18 20 0.17 20 0.17

X11 0 0.00 1 0.03 1 0.02 1 0.05 1 0.04 1 -0.02 1 0.01 1 -0.11 1 -0.03 1 0.01 4 0.07 1 -0.05 1 -0.10 0 0.00 4 -0.01 1 -0.00 0 0.00 3 -0.01 2 0.05 0 0.00 2 0.17

X12 0 0.00 1 -0.04 1 0.05 3 0.01 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 -0.04 0 0.00 0 0.00 0 0.00 1 0.07 4 0.03 0 0.00 1 0.08 0 0.00 0 0.00 2 0.01 0 0.00

X13 1 -0.01 0 0.00 0 0.00 1 0.02 2 -0.11 1 0.05 2 0.00 2 0.05 0 0.00 3 -0.01 2 -0.09 2 0.05 1 -0.09 2 0.04 1 -0.09 1 0.08 2 -0.01 0 0.00 0 0.00 4 0.04 3 0.11

X14 1 -0.10 3 -0.01 3 -0.02 1 -0.07 0 0.00 2 0.09 1 -0.05 3 -0.08 2 0.07 1 0.05 1 0.02 2 0.09 1 0.20 0 0.00 1 -0.02 3 -0.01 0 0.00 0 0.00 1 0.28 1 0.15 2 0.03

X15 2 -0.00 0 0.00 3 -0.07 1 0.12 3 -0.11 1 -0.01 0 0.00 1 -0.12 1 0.09 0 0.00 4 -0.01 1 0.00 0 0.00 2 -0.06 0 0.00 0 0.00 0 0.00 5 -0.07 6 0.00 3 0.04 3 0.08

X16 1 0.03 0 0.00 1 0.06 2 0.04 2 0.01 1 0.00 1 0.05 3 0.01 1 0.09 2 0.09 0 0.00 2 -0.03 0 0.00 3 0.00 1 -0.04 1 0.00 2 -0.07 1 -0.11 2 -0.00 0 0.00 2 0.03

X17 3 0.05 2 0.01 3 0.01 2 0.16 2 -0.06 1 -0.01 2 0.09 1 0.03 1 0.05 4 0.01 0 0.00 3 0.06 1 0.08 2 -0.07 1 0.00 1 0.02 9 -0.08 0 0.00 0 0.00 0 0.00 0 0.00

X18 0 0.00 0 0.00 0 0.00 1 -0.05 0 0.00 1 -0.06 1 -0.11 0 0.00 5 0.04 0 0.00 1 -0.10 0 0.00 2 -0.05 2 0.02 3 -0.04 2 0.04 2 -0.06 1 -0.17 1 0.14 0 0.00 0 0.00

X19 0 0.00 1 0.10 0 0.00 0 0.00 1 -0.18 0 0.00 1 0.04 0 0.00 0 0.00 0 0.00 0 0.00 2 0.09 0 0.00 0 0.00 0 0.00 0 0.00 1 -0.02 1 -0.11 0 0.00 0 0.00 1 0.07

X20 0 0.00 0 0.00 1 0.07 1 0.02 1 0.07 4 -0.01 1 -0.03 0 0.00 0 0.00 2 0.09 0 0.00 2 0.13 3 0.13 0 0.00 1 0.08 1 -0.09 1 0.10 6 -0.07 1 0.06 2 -0.06 1 0.14

Table 4.18: Frequency & CODEC value table from D1 (1-dimensional) to D20 (20-
dimensional) when N = 500 and β ∼ U(0, 1) using VAE as latent variable estimator.
The signals X3, X10, and X17 are highlighted with light indigo.
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X’s D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

X1 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.03 0 0.00 0 0.00 0 0.00 0 0.00 2 -0.00 1 -0.01 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X2 2 0.02 0 0.00 0 0.00 0 0.00 1 0.01 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 -0.01 0 0.00

X3 20 0.46 20 0.46 20 0.47 20 0.46 20 0.46 20 0.47 20 0.47 20 0.45 20 0.46 20 0.44 20 0.45 20 0.45 20 0.43 20 0.44 20 0.44 20 0.42 20 0.44 20 0.44 20 0.42 20 0.43 20 0.41

X4 0 0.00 0 0.00 0 0.00 1 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.02 2 0.01 0 0.00 1 -0.02

X5 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.01 0 0.00

X6 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 -0.01 0 0.00 0 0.00 1 0.01 5 0.01 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X7 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 -0.00 0 0.00 0 0.00 0 0.00 1 0.02 0 0.00 0 0.00 0 0.00 1 -0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X8 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 0.01 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 -0.02 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 -0.03 0 0.00

X9 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.01 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X10 20 0.11 20 0.11 20 0.11 20 0.10 20 0.11 20 0.11 20 0.10 20 0.10 20 0.11 20 0.10 20 0.11 20 0.11 20 0.11 20 0.11 20 0.10 20 0.10 20 0.11 20 0.10 20 0.10 20 0.11 20 0.10

X11 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X12 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X13 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 -0.00 0 0.00 0 0.00 0 0.00 1 -0.01 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X14 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

X15 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.01 2 0.00 0 0.00

X16 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 -0.00 0 0.00 0 0.00 0 0.00 0 0.00

X17 20 0.01 20 0.01 19 0.01 20 0.01 18 0.02 19 0.01 14 0.02 14 0.02 17 0.02 17 0.01 11 0.01 14 0.03 16 0.01 16 0.02 8 0.02 19 0.01 18 0.01 9 0.01 11 -0.00 7 0.00 20 0.01

X18 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 -0.01 0 0.00

X19 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.00 0 0.00 1 -0.00 0 0.00 0 0.00 0 0.00 0 0.00

X20 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.01 0 0.00 0 0.00 0 0.00 1 -0.01 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

Table 4.19: Frequency & CODEC value table from D1 (1-dimensional) to D20 (20-
dimensional) when N = 10000 and β ∼ U(0, 0.01) using VAE as latent variable estimator.
The signals X3, X10, and X17 are highlighted with light indigo.

X’s D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

X1 1 -0.01 2 -0.00 0 0.00 0 0.00 2 0.03 1 -0.08 1 0.05 3 0.04 1 0.21 1 0.12 2 0.03 3 0.02 2 0.09 0 0.00 2 -0.03 1 0.11 1 -0.10 1 0.02 0 0.00 2 -0.01 3 0.10

X2 0 0.00 2 -0.05 2 0.02 0 0.00 0 0.00 2 -0.02 1 0.06 0 0.00 2 -0.06 1 0.09 0 0.00 0 0.00 1 0.07 1 0.03 1 0.03 1 0.02 1 0.05 0 0.00 1 0.27 0 0.00 0 0.00

X3 20 0.38 20 0.34 20 0.33 20 0.37 20 0.34 20 0.29 20 0.32 20 0.28 20 0.34 20 0.38 20 0.34 20 0.29 20 0.36 20 0.34 20 0.31 20 0.35 20 0.25 20 0.23 20 0.32 20 0.31 20 0.34

X4 1 -0.06 0 0.00 1 0.00 2 0.03 0 0.00 1 -0.11 0 0.00 2 -0.03 1 -0.01 1 0.22 2 -0.02 1 -0.05 1 0.15 0 0.00 0 0.00 0 0.00 0 0.00 3 -0.04 1 0.08 0 0.00 0 0.00

X5 1 0.00 1 0.00 1 -0.00 0 0.00 1 -0.01 0 0.00 0 0.00 2 -0.08 1 0.01 0 0.00 0 0.00 1 -0.04 0 0.00 0 0.00 0 0.00 1 -0.14 0 0.00 0 0.00 1 0.02 0 0.00 0 0.00

X6 0 0.00 2 0.03 1 0.04 1 0.10 1 0.01 6 0.09 3 -0.03 3 0.04 1 0.12 1 -0.02 5 0.05 2 -0.01 1 0.14 6 0.05 3 -0.01 4 -0.00 1 0.05 5 -0.11 1 0.28 1 0.05 4 0.10

X7 0 0.00 1 0.03 1 0.05 1 0.04 0 0.00 0 0.00 1 -0.01 1 -0.00 0 0.00 4 0.02 1 0.02 0 0.00 0 0.00 0 0.00 2 0.03 3 -0.06 1 0.02 0 0.00 1 0.03 0 0.00 0 0.00

X8 2 -0.03 1 0.11 0 0.00 2 -0.00 1 -0.04 0 0.00 2 0.05 1 -0.03 1 0.02 1 0.02 3 0.01 2 -0.03 1 0.04 0 0.00 3 -0.02 0 0.00 2 0.01 7 -0.06 3 0.01 1 0.02 3 0.15

X9 2 -0.03 5 -0.05 4 0.00 2 0.02 3 -0.01 1 0.05 1 0.02 5 -0.06 2 0.09 2 0.03 1 0.08 3 0.03 0 0.00 0 0.00 1 0.03 1 -0.17 1 -0.02 3 -0.04 0 0.00 3 -0.05 1 -0.07

X10 19 0.16 20 0.17 19 0.16 19 0.16 20 0.13 20 0.14 20 0.16 20 0.14 20 0.16 19 0.13 20 0.09 20 0.13 20 0.21 19 0.10 20 0.07 20 0.15 20 0.13 20 0.06 20 0.17 20 0.17 20 0.18

X11 0 0.00 1 0.02 3 -0.03 1 0.13 0 0.00 2 -0.05 1 0.02 1 -0.12 2 0.02 0 0.00 4 0.06 2 -0.02 3 -0.05 0 0.00 4 -0.02 1 0.01 0 0.00 2 0.00 3 -0.03 0 0.00 3 0.15

X12 1 -0.06 0 0.00 0 0.00 1 0.03 1 -0.06 1 -0.05 1 -0.02 0 0.00 0 0.00 1 -0.06 0 0.00 0 0.00 0 0.00 1 0.09 4 -0.00 2 0.07 1 0.06 0 0.00 0 0.00 2 0.01 0 0.00

X13 1 -0.06 0 0.00 0 0.00 0 0.00 0 0.00 1 0.02 0 0.00 2 -0.02 0 0.00 3 -0.00 2 -0.07 1 0.09 1 -0.07 0 0.00 2 -0.05 1 0.02 4 -0.01 0 0.00 0 0.00 4 0.01 2 0.08

X14 2 -0.10 2 -0.01 2 -0.01 0 0.00 1 -0.02 0 0.00 1 -0.02 1 -0.07 1 0.13 0 0.00 1 0.05 2 0.07 0 0.00 0 0.00 1 0.04 2 -0.01 0 0.00 1 0.03 1 0.28 1 0.12 0 0.00

X15 0 0.00 1 0.13 3 -0.09 1 0.09 4 -0.09 0 0.00 0 0.00 1 -0.05 1 0.01 0 0.00 5 -0.01 0 0.00 1 -0.02 1 0.06 3 0.00 1 -0.03 0 0.00 5 -0.08 3 -0.07 4 0.04 4 0.10

X16 1 0.01 0 0.00 1 0.04 2 0.04 2 -0.14 2 -0.01 1 -0.01 3 0.01 1 0.08 3 0.07 0 0.00 3 0.13 0 0.00 2 0.02 1 -0.03 2 0.09 1 -0.10 1 -0.08 1 0.00 0 0.00 2 0.02

X17 2 0.06 3 0.00 3 0.02 0 0.00 3 -0.03 2 -0.03 2 0.09 1 0.04 2 0.06 3 -0.00 0 0.00 3 0.04 2 0.04 0 0.00 2 0.00 2 0.04 4 -0.05 1 -0.13 1 -0.15 0 0.00 0 0.00

X18 0 0.00 0 0.00 0 0.00 3 -0.03 0 0.00 1 -0.10 1 -0.00 1 -0.02 5 0.01 0 0.00 1 -0.10 2 -0.03 1 -0.02 3 0.03 2 -0.04 1 -0.01 2 -0.03 0 0.00 2 0.09 0 0.00 0 0.00

X19 0 0.00 2 0.08 0 0.00 0 0.00 1 -0.04 1 0.05 1 0.04 0 0.00 0 0.00 0 0.00 0 0.00 1 0.07 0 0.00 1 0.18 0 0.00 0 0.00 4 0.03 0 0.00 0 0.00 0 0.00 0 0.00

X20 0 0.00 0 0.00 0 0.00 2 -0.05 0 0.00 4 -0.03 0 0.00 0 0.00 1 -0.15 2 0.10 0 0.00 0 0.00 1 0.18 1 0.00 0 0.00 0 0.00 0 0.00 3 -0.12 1 0.07 2 -0.02 2 0.08

Table 4.20: Frequency & CODEC value table from D1 (1-dimensional) to D20 (20-
dimensional) when N = 500 and β ∼ U(0, 0.01) using VAE as latent variable estimator.
The signals X3, X10, and X17 are highlighted with light indigo.

X’s D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

X1 11 0.05 13 0.04 9 0.03 12 0.05 15 0.04 17 0.05 12 0.05 9 0.02 15 0.04 17 0.04 12 0.04 16 0.04 16 0.05 14 0.05 15 0.05 20 0.03 17 0.03 16 0.05 15 0.03 14 0.03 14 0.04

X2 5 0.05 9 0.04 11 0.03 11 0.03 12 0.04 7 0.03 13 0.04 13 0.02 10 0.04 10 0.04 9 0.04 6 0.05 8 0.04 13 0.04 7 0.03 14 0.04 12 0.03 11 0.03 7 0.02 11 0.02 13 0.02

X3 20 0.21 20 0.22 20 0.22 20 0.22 20 0.21 20 0.22 20 0.21 20 0.22 20 0.21 20 0.20 20 0.20 20 0.21 20 0.22 20 0.22 20 0.20 20 0.20 20 0.20 20 0.20 20 0.20 20 0.20 20 0.19

X4 13 0.04 8 0.04 5 0.03 11 0.04 3 0.02 10 0.02 7 0.03 14 0.02 9 0.05 12 0.03 7 0.00 10 0.04 12 0.03 9 0.06 10 0.03 12 0.03 10 0.02 15 0.02 11 0.03 8 0.03 11 0.03

X5 2 0.02 4 0.01 2 0.01 5 0.03 8 0.00 6 0.03 10 0.02 8 0.01 2 0.01 11 0.03 3 0.01 7 0.02 5 0.01 6 0.02 8 0.03 9 0.02 7 0.01 6 0.02 11 0.02 4 -0.01 6 0.02

X6 17 0.05 20 0.04 18 0.04 12 0.04 18 0.05 17 0.04 19 0.04 18 0.04 20 0.04 17 0.05 17 0.04 13 0.03 15 0.04 15 0.05 17 0.05 15 0.05 16 0.03 19 0.04 18 0.04 17 0.03 20 0.03

X7 5 0.03 1 -0.00 4 0.03 4 0.02 5 0.03 7 0.03 9 0.02 4 0.03 5 0.02 14 0.02 2 -0.01 9 0.04 10 0.03 8 0.04 7 0.04 7 0.04 5 0.01 5 0.02 5 0.01 9 0.04 3 0.02

X8 2 0.04 4 0.02 1 -0.01 1 0.01 3 0.02 4 0.01 3 0.01 0 0.00 5 0.02 1 0.02 4 0.01 2 0.02 4 0.02 1 0.02 1 0.01 1 0.01 1 0.04 3 -0.00 2 0.01 2 0.02 4 -0.00

X9 1 0.02 6 0.02 1 0.01 2 0.02 8 0.02 2 0.01 4 0.01 3 0.01 3 0.01 4 0.02 5 0.01 3 0.01 2 -0.00 2 0.00 6 0.01 5 -0.00 1 0.02 5 0.00 4 0.00 5 0.00 7 0.01

X10 20 0.05 20 0.05 20 0.04 20 0.05 20 0.05 20 0.06 20 0.05 20 0.04 19 0.05 20 0.05 19 0.05 19 0.05 18 0.06 18 0.05 20 0.05 20 0.04 20 0.03 20 0.04 19 0.03 20 0.04 20 0.03

X11 0 0.00 1 0.01 1 0.02 2 -0.01 0 0.00 0 0.00 0 0.00 1 0.01 1 0.02 0 0.00 0 0.00 0 0.00 1 0.02 2 0.01 0 0.00 0 0.00 2 -0.01 0 0.00 0 0.00 0 0.00 0 0.00

X12 0 0.00 0 0.00 0 0.00 0 0.00 1 -0.02 0 0.00 0 0.00 0 0.00 2 0.02 1 -0.00 0 0.00 0 0.00 1 0.00 1 0.04 1 -0.01 1 0.02 0 0.00 1 -0.02 0 0.00 1 -0.01 1 -0.05

X13 0 0.00 2 -0.00 2 -0.01 1 -0.01 1 -0.03 0 0.00 3 0.01 2 -0.04 0 0.00 0 0.00 2 0.01 0 0.00 1 0.01 0 0.00 2 0.01 0 0.00 2 0.00 0 0.00 0 0.00 1 -0.06 2 0.00

X14 0 0.00 0 0.00 0 0.00 1 -0.01 0 0.00 0 0.00 1 -0.01 0 0.00 1 -0.00 1 0.01 0 0.00 0 0.00 1 -0.01 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 -0.02 0 0.00

X15 0 0.00 0 0.00 0 0.00 0 0.00 1 -0.01 0 0.00 0 0.00 1 -0.02 0 0.00 0 0.00 0 0.00 1 -0.01 0 0.00 0 0.00 0 0.00 0 0.00 2 0.00 1 -0.01 1 -0.01 0 0.00 1 -0.01

X16 1 -0.01 0 0.00 1 -0.01 2 -0.01 0 0.00 1 0.03 0 0.00 2 -0.01 0 0.00 3 0.02 0 0.00 0 0.00 0 0.00 2 0.01 3 0.00 3 0.01 2 -0.02 0 0.00 1 0.01 1 0.02 0 0.00

X17 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.01 1 -0.00 3 0.01 1 0.00 1 0.02 0 0.00 1 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 0.03 1 0.01 0 0.00 1 0.01 0 0.00

X18 0 0.00 0 0.00 2 -0.00 1 -0.01 0 0.00 1 0.02 1 0.00 2 -0.01 1 0.02 1 0.01 0 0.00 1 0.01 1 -0.01 1 0.01 1 -0.02 1 0.03 0 0.00 1 -0.00 0 0.00 1 -0.02 4 -0.01

X19 2 -0.02 1 -0.00 1 -0.04 2 -0.00 2 0.03 2 -0.00 3 -0.02 2 -0.02 3 0.01 0 0.00 2 0.01 2 0.01 1 -0.01 1 0.01 0 0.00 0 0.00 1 0.02 1 -0.01 0 0.00 1 -0.04 1 -0.00

X20 0 0.00 0 0.00 0 0.00 0 0.00 1 -0.00 0 0.00 1 0.00 0 0.00 0 0.00 1 -0.05 1 0.01 0 0.00 0 0.00 3 -0.01 0 0.00 2 0.01 1 -0.01 0 0.00 3 -0.02 0 0.00 0 0.00

Table 4.21: Frequency & CODEC value table from D1 (1-dimensional) to D20 (20-
dimensional) when N = 10000 and β ∼ U(10, 20) using VAE as latent variable estimator.
The signals X3, X10, and X17 are highlighted with light indigo.
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X’s D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

X1 7 0.12 6 0.17 9 0.07 2 0.05 2 0.03 5 -0.00 6 0.09 7 0.14 5 0.10 7 0.08 6 0.03 6 0.10 4 0.14 4 0.13 9 0.04 7 0.09 5 0.09 5 0.01 2 0.00 2 0.14 9 0.14

X2 0 0.00 6 0.06 1 0.16 1 0.02 3 0.17 7 0.05 6 0.10 4 0.05 4 0.08 7 0.10 4 -0.03 3 0.11 2 0.02 4 0.10 1 -0.04 8 0.11 1 0.04 3 0.10 7 0.18 3 0.06 8 0.19

X3 9 0.13 12 0.06 13 0.14 11 0.11 12 0.14 16 0.12 7 0.08 10 0.10 6 0.01 10 0.10 11 0.04 6 0.12 7 0.17 12 0.11 12 0.09 10 0.07 10 0.07 9 0.03 12 0.14 7 0.13 12 0.20

X4 3 0.13 5 0.00 5 0.00 7 0.01 1 0.20 4 -0.01 1 0.21 10 0.14 5 0.02 5 0.02 2 -0.12 2 -0.00 9 0.03 2 0.06 10 0.02 7 0.03 5 0.04 9 0.03 5 0.11 4 0.13 5 0.08

X5 5 0.07 5 -0.00 6 0.03 7 0.07 7 0.05 8 0.10 2 -0.00 6 0.08 5 0.06 6 0.01 7 0.08 6 0.13 6 0.06 5 0.12 8 0.07 12 0.12 5 0.07 6 -0.01 6 0.15 10 0.16 2 0.13

X6 5 0.13 10 0.12 7 0.09 8 0.07 11 0.14 9 0.09 10 0.07 5 0.14 9 0.13 5 0.08 12 0.09 4 0.14 8 0.11 10 0.12 9 0.06 3 0.03 7 0.09 11 0.07 10 0.18 9 0.16 6 0.10

X7 2 -0.00 2 0.04 5 0.15 3 0.09 4 0.05 4 -0.01 1 0.04 1 0.02 2 0.05 4 0.04 1 -0.08 4 0.06 2 -0.01 2 -0.03 3 0.00 2 0.05 3 0.11 4 0.03 4 0.10 4 0.07 3 0.07

X8 4 0.05 3 0.04 3 0.07 5 0.08 2 -0.00 6 0.11 1 -0.03 1 0.15 4 0.07 2 0.09 2 -0.02 2 0.06 2 0.08 6 0.09 7 -0.03 4 0.11 7 0.16 5 0.01 5 0.04 2 0.19 3 0.13

X9 2 -0.10 0 0.00 3 0.05 4 -0.01 3 0.04 1 0.14 3 0.03 1 0.08 1 0.23 3 0.10 4 -0.03 8 0.15 3 0.07 2 -0.06 2 0.09 4 0.07 2 -0.02 5 -0.04 2 0.07 2 0.14 3 -0.00

X10 6 0.10 4 0.05 2 -0.00 5 0.08 8 0.06 3 0.20 8 0.12 5 0.05 5 0.08 8 0.12 3 0.05 5 0.16 2 0.07 7 0.13 4 0.04 7 0.09 8 0.09 9 0.06 7 0.12 5 0.08 2 0.01

X11 0 0.00 1 0.04 1 0.04 3 -0.00 1 -0.02 3 0.03 2 0.02 0 0.00 4 -0.03 3 0.07 2 -0.11 1 0.08 0 0.00 3 -0.01 6 0.05 1 0.17 4 0.04 1 -0.02 3 0.07 4 0.11 1 0.12

X12 1 0.02 2 0.12 3 0.11 4 0.05 2 0.06 1 -0.04 0 0.00 0 0.00 1 0.06 0 0.00 2 -0.02 0 0.00 3 0.09 5 0.03 1 -0.15 2 0.05 4 -0.02 0 0.00 1 0.17 3 0.14 0 0.00

X13 0 0.00 5 0.08 1 -0.12 0 0.00 0 0.00 1 0.04 0 0.00 2 0.11 1 0.11 2 0.04 1 0.04 0 0.00 1 -0.02 2 0.03 3 -0.09 1 -0.09 3 0.12 1 -0.02 1 -0.01 3 0.02 0 0.00

X14 0 0.00 1 -0.11 2 0.12 1 -0.04 0 0.00 0 0.00 1 -0.07 2 0.17 1 -0.03 1 0.11 0 0.00 1 0.16 1 0.12 1 -0.07 2 0.12 2 0.08 2 -0.05 0 0.00 0 0.00 2 0.29 2 0.07

X15 1 0.17 2 0.08 0 0.00 1 0.09 0 0.00 1 0.04 0 0.00 0 0.00 3 -0.01 0 0.00 3 0.08 6 0.18 1 -0.05 1 0.09 3 -0.04 1 -0.03 2 0.00 2 -0.03 2 0.10 2 0.03 2 0.20

X16 1 0.03 1 -0.00 1 0.00 1 -0.01 1 -0.06 3 -0.01 2 -0.07 0 0.00 2 0.04 3 0.03 0 0.00 0 0.00 1 0.07 1 -0.07 2 0.07 1 0.11 2 0.09 3 0.01 1 0.19 2 0.18 1 0.04

X17 1 0.09 3 -0.03 1 -0.04 1 0.14 0 0.00 1 0.17 3 0.05 1 0.03 0 0.00 2 0.07 5 -0.07 2 0.03 2 -0.04 1 -0.05 1 -0.07 1 0.23 2 0.10 3 -0.07 1 -0.00 1 0.15 0 0.00

X18 1 -0.02 0 0.00 1 -0.10 1 0.21 0 0.00 2 -0.02 1 0.03 1 0.02 2 0.17 1 0.17 1 -0.08 2 0.13 1 -0.02 0 0.00 2 -0.12 1 0.19 0 0.00 3 0.04 0 0.00 2 0.19 2 0.06

X19 1 -0.03 1 -0.02 0 0.00 0 0.00 1 0.00 2 0.04 1 -0.18 3 -0.07 0 0.00 0 0.00 1 -0.15 0 0.00 3 0.17 1 0.07 0 0.00 1 -0.09 1 -0.13 2 -0.07 1 0.03 1 -0.02 0 0.00

X20 0 0.00 3 0.07 1 0.15 2 0.10 1 -0.11 1 0.05 4 0.08 2 0.16 1 0.06 9 0.12 3 0.04 0 0.00 2 0.03 0 0.00 2 -0.12 1 0.11 4 0.05 1 -0.07 3 0.09 0 0.00 4 0.10

Table 4.22: Frequency & CODEC value table from D1 (1-dimensional) to D20 (20-
dimensional) when N = 500 and β ∼ U(10, 20) using VAE as latent variable estimator.
The signals X3, X10, and X17 are highlighted with light indigo.
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Discussions

Before discussion, we define the signals S1 := X2
3 , S2 := X10, and S3 :=

√
|X17|.

i.) When the given sample size N = 10000, PCA methods selects S1 perfectly when the

term Zβ is dominating the magnitude of the response, but seldomly selects S2 when

including the estimated latent confounders (see Table 4.14). It is natural since if the

latent variables make the most magnitude contributions to the response Y , FOCI

would miss its direction in finding the signals with the smaller magnitude since the

smaller the magnitude is, the CODEC value will become more closer to zero, which

is the natural property derived form its definition. As we can see from Figure 4.8,

S1 is more close to hidden counfounder compared to S2. As the result, we select less

times of S2 compared to S1.

ii.) When the given sample size N = 10000, and Zβ is not dominating the magnitude,

and the included principal components are not too many (say at most we include

9 PCs), FOCI using PCA estimator does not selects S3 very often which is not in

the set of variables depending on Z but selects the ones which depend on perfectly.

However, under the same conditions mention before, the VAE estimator selects the S3

for near 20 frequencies from including 1-dimensional Zest to including 5-dimensional

Zest. Using the heuristic threshold 4.2.1 that choose τ0 = R/2 = 10 (in our case),

we found that S3 will often be selected as the estimated Markov blanket including

from 0-dimensional to 20-dimensional confounder estimates using VAE. However, if

using PCA as confouder estimator, the selection results become worse since when

we include different numbers of PCs, it is not significant enough to select S3. That

empirically gives us the justification that the VAE estimator is better than PCA

estimator in the sense of the nonlinearity between the response and predictors and

the sparsity between the predictors and the confounders.

iii.) When the given sample sizeN = 10000, Zβ is not dominating the magnitude, and the

included principal components (dimensions) is greater than or equal to 10 PCs (10-

dimensional space), we can see from the Table 4.10, 4.12, 4.17, and 4.19 that while

increasing the dimension of included Zest, the frequencies of selected signals started

to increase, which means we are performing better with increased PC (dimension).

After verifying the values of CODEC(Y,X17|X17) and CODEC(Y,X17|X
′
), and reck-

oning them both to be zero, the result turns out to be surprising since the latter one

has strictly positive value and showing an increasing trend when the dimension of

X
′

increases. Note that X17 ∈ X′ ⊆ X = (X1, ..., X20). It partly gives us the answer

to the issue about including the full principle components X′ as conditioning set,

since including X′ does not lead to a decrease of performance.

However, this phenomena remains to be discovered. As mentioned in Azadkia and

Chatterjee (2021), a new consistent stopping rule could be designed in the future.

iv.) We also note that not including the estimated latent confounders in the conditioning

set also gives us perfect results in the sense of pure signal selection. If the sample

size is large enough, and our purpose is to just select distinguished variables, original
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FOCI could possibly be used regardless of latent confounding.

This remains to be tested in real dataset, which will be implemented and discussed

in the next section.

v.) When the given sample amount N = 500, both PCA and VAE methods with dif-

ferent settings of β perform poor results. Fixing the included principal components

(dimensions), FOCI selects the Markov blanket quite by random. Thus, the size of

data is of great importance when using FOCI for variable selection.

We also learn from this that when given less samples, original FOCI would not

perform well anymore compared to the new FOCI which includes the estimate of

hidden confounders in the conditioning set. It is in accordance with our expectation.

What’s more, speaking of comparison between using PCA and using VAE, we found

that FOCI with PCA performs generally well than using VAE when we have less

sample size.

vi.) When the Zβ is dominating the other signals, FOCI shows poor performance of

selecting S2 and S3, while perform well given sufficient sample size when selecting

S1 since the magnitude of S1 is greater than that of S2 and S3. The only exception

is the case of FOCI with VAE estimator when N = 10000, it also selects S2 all the

time.

This reveals the great importance of balancing the magnitude between the signals

and confounders, though using VAE estimators will ease this problem under specific

conditions. In real-life datasets, we may need to learn some prior knowledge about

the predictors and potential confounders as well as investigating thoroughly about

their importance to the response.

vii.) Speaking of corresponding CODEC values, we found an interesting phenomenon

that although PCA method selects much less of X17, but the corresponding aver-

age CODEC value will be around 0.2, which is sufficient to say that there exists

conditional dependencies.

While VAE are selecting X17’s, the average CODEC values will be a positive number

which is much smaller compared to that of PCA, e.g. 0.01, 0.02.

viii.) It can be concluded that the nonlinear functional relationship between response Y

and signals X and the small magnitude of signals together add difficulties to variable

selection.

ix.) Using VAE can help us further distinguish the true Markov blanket while PCA

sometimes abandoned the signals that are independent of latent confounder Z and

choose to select the non-signals as signals.

x.) In terms of computational complexity, plain PCA method under big datasets will

certain take much more time to run. VAE is utilizing the GPU to train the network

and thus is much faster compared to PCA estimator. It is worth noting that while

the sample size N grows linearly, the computation time of PCA grows cubically, i.e.
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O(N3). It is necessary to utilize GPU parallel computation and deriving new PCA

algorithms (Andrecut, 2009; Yu, Gu, Li, Liu, and Li, 2017) when we have a large

dataset while using PCA as estimator.



Chapter 5

Application to Real Dataset

5.1 Dataset and Methods

In this section, we apply FOCI with PCA and FOCI with VAE on the UCI Wine Quality

dataset (Dua and Graff, 2017). This dataset describes the dependence between the wine

quality score (0 - 10 integers) Y given by human raters of red and white wine, and 11

different predictors: X1: fixed acidity, X2: volatile acidity, X3: citric acid, X4: residual

sugar, X5: chlorides, X6: free sulfur dioxide, X7: total sulfur dioxide, X8: density, X9:

pH, X10: sulphates, and X11: alcohol. It seems that it is a simple variable selection and

regression task for us, however, Janzing and Schölkopf (2018) found that there might exist

one confounding variable X11 (alcohol) since its estimated confounding strength is 0.55,

which indicates that X11 is plausibly correlated with the remaining predictors (X1, ..., X10)

and at the same time influences Y .

In that sense, we will assume that we do not know about X11 and use the first 10 predictors

to select and predict. Then, we use the training mean squared prediction errors (MSPE)

and the test MSPE to evaluate the performance.

We will compare those metrics among the following methods:

• FOCI: pure FOCI without any adjustment to select signals and random forest (RF)

(Breiman, 2001) regressor to predict the wine quality Ŷ .

• FOCI-OPCA: Using the selection and resampling scheme which selects the number

of principal components via the highest precision (lowest FDP), and combine it with

FOCI. Then using the RF to regress on training set (estimate of latent confounder

incl.) and predict on test test.

• FOCI-FPCA: Including all the principle components in the CODEC conditioning

set and use RF to regress on training set (estimate of latent confounder incl.) and

predict.

• FOCI-OVAE: Using the selection and resampling scheme to select the dimension of

latent space by minimizing the FDP and sample from that latent space to be the

50
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estimate of Z. Then use RF to regress on traning set (estimate of latent confounder

incl.) and predict.

• LASSO: LASSO (Tibshirani, 1996) with BIC-like criteria (Gao and Song, 2010)

BICC = n log(σ̂2) + 3× s log(n),

where n is the sample size, σ̂2 is the MSE of the model, s is the optimal Markov

blanket the lasso would choose based on different regularization constants λ. We

use BICC to tune the λ. Then using the best BICC model and RF to regress and

predict.

• SCAD: Smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001) with BICC

to tune the hyperparameter λ and use the best model and RF to regress and predict.

5.2 Results

The results is given in Table 5.1. From what we have seen, we notice that FOCI with

latent confounder estimators attained competitive prediction errors as the other methods

like LASSO, but with fewer number of variables. For SCAD feature selection, we noticed

that even if it selects a small set of predictors, however, the training and test MSPE are

worse than the FOCI family.

We can also see that using original FOCI selects all the predictors which leads to the huge

performance difference between the train and the test set.

Next, speaking of including all the principal components to retrieve all the useful infor-

mation of original latent confounder Z. We did achieve the best training MSPE among all

the methods, however, by adding too many additional estimates of latent confounders as

predictors, we will have the reduced generalization ability. In general, we should balance

between the information retrieved and the genaralization ability.

Finally, experiment with UCI Wine Quality dataset may not be a perfect in the sense

of implementing our new methods since we do not know whether there are confounders

or not. We expect to acquire DNA sequence datasets in the future, which often has the

situation that the dimension p is larger than the sample size N as well as exists certain

verified confounders. In that sense, it is necessary to select variables.

Methods |Ŝ| Training MSPE Test MSPE

FOCI 10 0.072 0.496
FOCI-OPCA 4 0.138 0.526
FOCI-FPCA 2 0.068 0.811
FOCI-OVAE 6 0.099 0.469

LASSO 9 0.073 0.365
SCAD 3 0.201 0.567

Table 5.1: Comparison table of FOCI and its extensions, LASSO, and smoothly clipped
absolute deviation (SCAD) in UCI Wine Quality variable selection. |Ŝ| denotes the number
of variables selected.



Chapter 6

Concluding Remarks

We conclude that this particular nonparametric variable selection method is computation-

ally efficient and has the potential to extend to the case that there are hidden confoundings.

Given sufficient samples, we propose to use FOCI with proper latent variable estimation

method since it not only selects correct Markov blanket with certain control of false discov-

ery proportion and give us a view of the empirical distributions of the latent confounders,

but also remove the spurious association between non-signals X\S and response Y .

To be more specific, if one have a prior knowledge that the relationship between X and

Z is dense, it is recommend to use principal components analysis to estimate the latent

confounders. We also gave out theoretical justifications of using principle components as

estimator. If one assume that this relationship is not dense and the sample size is sufficient

to train, it is recommend to use variational autoencoder to encode the latent space. If we

are lacking enough samples, we generally recommend to use FOCI with PCA.

Besides, using the scheme of resampling and as the result discovering the frequency of

each variable will make the variable selection decision process more distinguishable (e.g.

with a heuristic threshold), especially giving aids to determine the dimension of estimated

latent space. We propose to use this scheme given sufficient computation ability since it

requires a lot time of running the whole loop.

In the context of magnitude mentioned in Section 4.2.8, we proposed that if the signals

are not dominated by the confounders, FOCI will be a nice choice and perform well. We

thus suggest to first investigate the magnitude of given predictors and gain some prior

knowledge on the potential confounders.

What’s more, even though the FOCI with latent variable estimators generally generate

satisfying results, however, the computational complexity is relatively high compared to

VAE which utlizes GPU. We then proposed to use some new PCA algorithms which utilize

GPU parallel computations.

Finally, on the given real dataset, we can conclude that using FOCI family (with or without

latent confounder estimation) generally has similar performance compared with the classic

methods like LASSO and SCAD with respect to MSPE and generalization ability but has
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a smaller Markov blanket.



Chapter 7

Future Works

We note that we only used two kinds of latent confounder estimators. It is also worthwhile

to try on other different latent confounder estimators, such as kernel principal component

analysis, classical factor analysis model (Child, 1990), and deep neural networks to com-

pare the variable selection capability and the prediction error. As for sparse relationship

between signals and confounders, one may further dig into the construction of the varia-

tional autoencoder and other deep neureal networks to see if using changing architectures

would lead to a better estimation result and prediction error. Besides, one may also based

on different priors p(Z) such as using the distributions from location-scale family and in-

stead of sampling from posterior distribution, but to directly use the posterior mean to

make a more stable estimation of latent confounders, which would provide us a clearer

view of the empirical distribution of confounders.

After Experiment 4, we have theoretically justified the use of PCA as estimator under

the scope of equal CODEC values. It is worth to discover the rate of convergence of the

CODEC value and other norm preserving transformations with the random error term

included. A formal proof remains to be given out in the future.

Under the nonlinear relationship between X and Z, we observed that VAE estimator

perform better than PCA in FOCI variable selection in the sense of precision and selection

frequency. It is worth to experiment our methods in more real-life datasets like DNA data

to see whether it selects the correct Markov blanket.

In addition, speaking of false discovery proportion control (or FDR, which the FDP taking

expectation) of variable selection, Candes, Fan, Janson, and Lv (2018) proposed the Model-

X knockoff to teases apart important from irrelevant variables (controlling FDR) while

guaranteeing Type I error control. However, it is assumed based on the fact that there

is no confounding variables that may affect the procedure of variable selection. It is left

open to find a new threshold for controlling the FDR/FDP for the variable selection under

latent confounding and hopefully one could define a new statistic using CODEC.

Finally, speaking of small sample size, Chatterjee (2020) mentioned that the ranking-based

correlation seems to have less power than several popular tests of independence, which also

affectting the CODEC’s performance in testing. It is worth experimenting and provide
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avenues for boosting the power.
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